Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

A-to-I RNA editing enzyme ADAR2 regulates light-induced circadian phase-shift

View through CrossRef
AbstractIn mammals, the central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus and it orchestrates peripheral clocks in the whole body to organize physiological and behavioral rhythms. Light-induced phase-shift of the SCN clock enables synchronization of the circadian clock system with 24-h environmental light/dark cycle. We previously found that adenosine deaminase acting on RNA 2 (Adar2), an A-to-I RNA editing enzyme catalyzing rhythmic A-to-I RNA editing, governs a wide range of mRNA rhythms in the mouse liver and regulates the circadian behavior. In brain, ADAR2-mediated A-to-I RNA editing was reported to occur in various transcripts encoding ion channels and neurotransmitter receptors, which could influence neuronal function of the SCN. Here we show that ADAR2 plays a crucial role for light-induced phase-shift of the circadian clock. Intriguingly, exposure of Adar2-knockout mice to a light pulse at late night caused an aberrant phase-advance of the locomotor rhythms. By monitoring the bioluminescence rhythms of the mutant SCN slices, we found that a phase-advance induced by treatment with pituitary adenylyl cyclase-activating polypeptide (PACAP) was markedly attenuated. The present study suggests that A-to-I RNA editing in the SCN regulates a proper phase response to light in the mouse circadian system.
Title: A-to-I RNA editing enzyme ADAR2 regulates light-induced circadian phase-shift
Description:
AbstractIn mammals, the central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus and it orchestrates peripheral clocks in the whole body to organize physiological and behavioral rhythms.
Light-induced phase-shift of the SCN clock enables synchronization of the circadian clock system with 24-h environmental light/dark cycle.
We previously found that adenosine deaminase acting on RNA 2 (Adar2), an A-to-I RNA editing enzyme catalyzing rhythmic A-to-I RNA editing, governs a wide range of mRNA rhythms in the mouse liver and regulates the circadian behavior.
In brain, ADAR2-mediated A-to-I RNA editing was reported to occur in various transcripts encoding ion channels and neurotransmitter receptors, which could influence neuronal function of the SCN.
Here we show that ADAR2 plays a crucial role for light-induced phase-shift of the circadian clock.
Intriguingly, exposure of Adar2-knockout mice to a light pulse at late night caused an aberrant phase-advance of the locomotor rhythms.
By monitoring the bioluminescence rhythms of the mutant SCN slices, we found that a phase-advance induced by treatment with pituitary adenylyl cyclase-activating polypeptide (PACAP) was markedly attenuated.
The present study suggests that A-to-I RNA editing in the SCN regulates a proper phase response to light in the mouse circadian system.

Related Results

Abstract 1772: Circadian control of cell death in glioma cells treated with curcumin
Abstract 1772: Circadian control of cell death in glioma cells treated with curcumin
Abstract Treatments based on the phytochemical curcumin have much potential for use in cancer treatments because of their effects on a wide variety of biological pat...
Changes in hepatic circadian genes and liver function caused by sleep deprivation
Changes in hepatic circadian genes and liver function caused by sleep deprivation
Abstract Background. Sleep is an essential physiological activity for human beings, while sleep deprivation (SD) has become a public health concern and causes damage to mul...
Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics
Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics
The endogenous circadian pacemaker influences key physiologic functions, such as body temperature and heart rate, and is normally synchronized with the sleep/wake cycle. Epidemiolo...
Chronotherapeutic and Epigenetic Regulation of Circadian Rhythms: Nicotinamide Adenine Dinucleotide-Sirtuin Axis
Chronotherapeutic and Epigenetic Regulation of Circadian Rhythms: Nicotinamide Adenine Dinucleotide-Sirtuin Axis
Circadian rhythms are endogenous oscillations coordinating the physiological and behavioral activities with the daily light-dark cycle and are controlled by molecular mechanisms. N...
Abstract 1798: The human mammary circadian transcriptome.
Abstract 1798: The human mammary circadian transcriptome.
Abstract The circadian rhythm, a phenomenon present in all of Eukaryota and in some members of Prokaryota, describes the processes within an organism that fluctuate ...
Quantification of circadian rhythms in mammalian lung tissue snapshot data
Quantification of circadian rhythms in mammalian lung tissue snapshot data
Abstract Healthy mammalian cells have a circadian clock, a gene regulatory network that allows them to schedule their physiological processes to optimal times of the day. W...
Reorganisation of circadian activity and the pacemaker circuit under novel light regimes
Reorganisation of circadian activity and the pacemaker circuit under novel light regimes
AbstractMany environmental features are cyclic, with predictable daily and yearly changes which vary across latitudes. Organisms cope with such change using internal timekeepers or...

Back to Top