Javascript must be enabled to continue!
Origin of dendrite-free lithium deposition in concentrated electrolytes
View through CrossRef
AbstractThe electrolyte solvation structure and the solid-electrolyte interphase (SEI) formation are critical to dictate the morphology of lithium deposition in organic electrolytes. However, the link between the electrolyte solvation structure and SEI composition and its implications on lithium morphology evolution are poorly understood. Herein, we use a single-salt and single-solvent model electrolyte system to systematically study the correlation between the electrolyte solvation structure, SEI formation process and lithium deposition morphology. The mechanism of lithium deposition is thoroughly investigated using cryo-electron microscopy characterizations and computational simulations. It is observed that, in the high concentration electrolytes, concentrated Li+ and anion-dominated solvation structure initiate the uniform Li nucleation kinetically and favor the decomposition of anions rather than solvents, resulting in inorganic-rich amorphous SEI with high interface energy, which thermodynamically facilitates the formation of granular Li. On the contrary, solvent-dominated solvation structure in the low concentration electrolytes tends to exacerbate the solvolysis process, forming organic-rich mosaic SEI with low interface energy, which leads to aggregated whisker-like nucleation and growth. These results are helpful to tackle the long-standing question on the origin of lithium dendrite formation and guide the rational design of high-performance electrolytes for advanced lithium metal batteries.
Springer Science and Business Media LLC
Title: Origin of dendrite-free lithium deposition in concentrated electrolytes
Description:
AbstractThe electrolyte solvation structure and the solid-electrolyte interphase (SEI) formation are critical to dictate the morphology of lithium deposition in organic electrolytes.
However, the link between the electrolyte solvation structure and SEI composition and its implications on lithium morphology evolution are poorly understood.
Herein, we use a single-salt and single-solvent model electrolyte system to systematically study the correlation between the electrolyte solvation structure, SEI formation process and lithium deposition morphology.
The mechanism of lithium deposition is thoroughly investigated using cryo-electron microscopy characterizations and computational simulations.
It is observed that, in the high concentration electrolytes, concentrated Li+ and anion-dominated solvation structure initiate the uniform Li nucleation kinetically and favor the decomposition of anions rather than solvents, resulting in inorganic-rich amorphous SEI with high interface energy, which thermodynamically facilitates the formation of granular Li.
On the contrary, solvent-dominated solvation structure in the low concentration electrolytes tends to exacerbate the solvolysis process, forming organic-rich mosaic SEI with low interface energy, which leads to aggregated whisker-like nucleation and growth.
These results are helpful to tackle the long-standing question on the origin of lithium dendrite formation and guide the rational design of high-performance electrolytes for advanced lithium metal batteries.
Related Results
Lithium Dendrite Suppression through Controlled Mass Transfer
Lithium Dendrite Suppression through Controlled Mass Transfer
Lithium dendrite formation is a critical challenge that limits the lifetime of lithium (Li) metal batteries including lithium oxygen, and lithium sulfur systems. Dendrite growth oc...
Atomic mechanism of lithium dendrite penetration in solid electrolytes
Atomic mechanism of lithium dendrite penetration in solid electrolytes
Abstract
Lithium dendrite penetration through ceramic electrolytes is known to result in mechanical failure and short circuits, which has impeded the commercialization of a...
Lithium Prospectivity in the Northeast German and Thuringian Ba-sins
Lithium Prospectivity in the Northeast German and Thuringian Ba-sins
Over the years many boreholes have been drilled into the Northeast German Basin (NEGB) in pursuit of the exploration of hydrocarbons. As well as gaining important information regar...
Effect of crystallographic orientation on dendrite growth in directional solidification
Effect of crystallographic orientation on dendrite growth in directional solidification
Dendrite is a typical pattern in directional solidification, attracting many theoretical and experimental researches. However, the effect of crystallographic orientation on dendrit...
Morphology simulation and mechanical analysis of primary dendrites for continuously cast low carbon steel
Morphology simulation and mechanical analysis of primary dendrites for continuously cast low carbon steel
The initial growing dendrite is influenced significantly by the complicated solidification conditions in continuously oscillating mold. The uneven growth of dendrite causes some de...
Origin of Pingqiao fluorite-lithium deposit in Guizhou, southwest Yangtze Block, China
Origin of Pingqiao fluorite-lithium deposit in Guizhou, southwest Yangtze Block, China
Lithium (Li) stands as a critical mineral resource, finding applications across various industries such as new energy, medicine, and optoelectronics (Bowell et al., 2020). Fluorite...
PROSPECTS OF LITHIUM EXTRACTION IN UKRAINE
PROSPECTS OF LITHIUM EXTRACTION IN UKRAINE
Background. The paper examines the prospects for the development of lithium deposits, which are determined by the demand of modern industry for lithium and lithium raw materials. T...
The Origin of Improved Cycle Stability of Li-O2 Batteries Using High-Concentration Electrolytes
The Origin of Improved Cycle Stability of Li-O2 Batteries Using High-Concentration Electrolytes
The intrinsic instability of organic electrolytes seriously impedes practical applications of lithium–oxygen (Li-O2) batteries. Recent studies have shown that the use of high-conce...

