Javascript must be enabled to continue!
Corrosion of Zirconium-Base Alloys—An Overview
View through CrossRef
The corrosion and hydriding performance of zirconium-base alloys under pressurized water reactor (PWR) and boiling water reactor (BWR) conditions, as gaged by a comprehensive review of the technical literature, has been evaluated. Starting with a brief historical description of the development of zirconium for cladding and structural material in nuclear reactors and the corrosion problems associated with the use of the pure metal, it is shown that the development of zirconium-base alloys proceeded down two major paths. One development involved the zirconium-tin system and led to the development of the Zircaloys, whereas the other concentrated upon zirconium-niobium materials and produced the two major alloys of this system in use today: Zr-1Nb and Zr-2.5Nb. The corrosion data generated for each system, both in- and ex-reactor, are evaluated, and the benefits and potential problems associated with each alloy are discussed for both PWR and BWR applications. Potential areas of concern for the Zircaloy alloys in both applications include exposure temperature limitations and the formation of nonuniform accelerated corrosion products in the oxygenated irradiation environment. The zirconium-niobium alloys are found to be very sensitive to oxygen in the coolant and to prior heat treatment in ex-reactor experiments but show either minimum or negative acceleration due to the presence of neutron irradiation. Alloys that combine these two additives (for example, Zr-3Nb-1Sn and Ozhennite-0.5) do not appear to show promise as possible replacements for the Zircaloys under present-day conditions. The lack of a uniting theory for describing the mechanisms involved in the corrosion of zirconium-base alloys may hamper seriously possible future applications under different design conditions.
ASTM International100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959
Title: Corrosion of Zirconium-Base Alloys—An Overview
Description:
The corrosion and hydriding performance of zirconium-base alloys under pressurized water reactor (PWR) and boiling water reactor (BWR) conditions, as gaged by a comprehensive review of the technical literature, has been evaluated.
Starting with a brief historical description of the development of zirconium for cladding and structural material in nuclear reactors and the corrosion problems associated with the use of the pure metal, it is shown that the development of zirconium-base alloys proceeded down two major paths.
One development involved the zirconium-tin system and led to the development of the Zircaloys, whereas the other concentrated upon zirconium-niobium materials and produced the two major alloys of this system in use today: Zr-1Nb and Zr-2.
5Nb.
The corrosion data generated for each system, both in- and ex-reactor, are evaluated, and the benefits and potential problems associated with each alloy are discussed for both PWR and BWR applications.
Potential areas of concern for the Zircaloy alloys in both applications include exposure temperature limitations and the formation of nonuniform accelerated corrosion products in the oxygenated irradiation environment.
The zirconium-niobium alloys are found to be very sensitive to oxygen in the coolant and to prior heat treatment in ex-reactor experiments but show either minimum or negative acceleration due to the presence of neutron irradiation.
Alloys that combine these two additives (for example, Zr-3Nb-1Sn and Ozhennite-0.
5) do not appear to show promise as possible replacements for the Zircaloys under present-day conditions.
The lack of a uniting theory for describing the mechanisms involved in the corrosion of zirconium-base alloys may hamper seriously possible future applications under different design conditions.
Related Results
Corrosion Protection Application of Liquid-Infused Surface with Regional Growth of LDH Films on Al Alloys
Corrosion Protection Application of Liquid-Infused Surface with Regional Growth of LDH Films on Al Alloys
Al alloys with their easy accessibility and good workability have been extensively used in oceanic engineering area [1]. However, corrosion failure of Al alloys is a major challeng...
Fatigue Properties of Zirconium and Zirconium Alloys and Their Application in Design and FFS
Fatigue Properties of Zirconium and Zirconium Alloys and Their Application in Design and FFS
Abstract
A concern for fatigue in a Zirconium-clad reactor vessel was identified. To assess certain design details, elastic-plastic finite element analysis (FEA) can...
Development of Zirconium for Use in the Chemical Processing Industry
Development of Zirconium for Use in the Chemical Processing Industry
Zirconium alloys have been used in various applications for the past 60 years. The development of this material for use in the chemical and petrochemical industry, however, has tak...
High-Rate Dissolution of Corrosion Resistant Alloys in Nonaqueous Solutions at Room Temperature
High-Rate Dissolution of Corrosion Resistant Alloys in Nonaqueous Solutions at Room Temperature
Syntheses of pharmaceuticals often require a series of intermediate steps involving reactions in organic solvents. Some of these solutions can be aggressive towards the metallic ma...
Two-dimensional numerical analysis of differential concentration corrosion in seawater pipeline
Two-dimensional numerical analysis of differential concentration corrosion in seawater pipeline
Purpose
The purpose of this paper is to develop a new two-dimensional differential concentration corrosion mathematical model based on the knowledge that oxygen distribution on the...
Observations of Accelerated Hydriding in Zirconium Alloys
Observations of Accelerated Hydriding in Zirconium Alloys
During aqueous corrosion of zirconium alloys, a fraction of the hydrogen generated by the metal-water reaction is absorbed by the metal. This hydriding can result in a loss of duct...
Evaluating Corrosion Inhibitors For Sour Gas Subsea Pipelines
Evaluating Corrosion Inhibitors For Sour Gas Subsea Pipelines
Abstract
Using subsea carbon steel pipelines to transport wet sour gas possesses huge challenges to the operators to maintain the high level of the Assets and Ope...
Qualitative study on the corrosion behavior of Mg-Sn-Al-Zn alloys with different Sn contents by hot extrusion
Qualitative study on the corrosion behavior of Mg-Sn-Al-Zn alloys with different Sn contents by hot extrusion
Purpose
This paper aims to fill the gap in knowledge regarding how Sn content and extrusion affect the corrosion behavior of Mg-xSn-2Al-1Zn alloys in a 3.5 wt.% N...

