Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Effects of the hybrid plasmonic Ag/SrTiO3 nanocubes for efficient photo-catalytic of H2 generation and RhB decomposition

View through CrossRef
Introduction: Designing a novel photocatalyst toward the photo-catalytic degradation of dye molecules and hydrogen evolution reaction (HER) based on semiconductors has been drawn enormous attention as a potential strategy in the clean energy field and environmental treatment. Herein, a SrTiO3 (STO) nanocubes decorated with co-catalysts Ag nanoparticles (NPs) for H2 generation and organic dye Rhodamine B (RhB) photodegradation activity under UV and visible light irradiation was fabricated. Method: The crystallinity, morphology, and chemical components of the photocatalyst were characterized through X-ray powder diffraction (XRD), scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX), respectively. The optical properties were evaluated through the UV-Visible absorbance spectra. Results: As a result, the photo-catalytic performance of the obtained Ag/STO hybrid photocatalyst was higher than that of the pristine STO nanocubes due to i) the efficient charge separation and transfer of photogenerated electron-holes pairs; ii) the improvement of the light-harvesting efficacy in the visible light. The high photo-catalytic RhB decomposition of the achieved Ag/STO hybrid photo-catalytic was obtained compared to the pure SrTiO3 nanocubes under UV and visible light exposure. The H2 generation of Ag/STO photocatalyst was 2- and 12-time higher than that of the pure STO nanocubes under UV and visible light illumination, respectively. Conclusion: This study gives a general strategy for photocatalyst design towards water splitting for photo-catalytic H2 evolution and environmental deterioration.
Title: Effects of the hybrid plasmonic Ag/SrTiO3 nanocubes for efficient photo-catalytic of H2 generation and RhB decomposition
Description:
Introduction: Designing a novel photocatalyst toward the photo-catalytic degradation of dye molecules and hydrogen evolution reaction (HER) based on semiconductors has been drawn enormous attention as a potential strategy in the clean energy field and environmental treatment.
Herein, a SrTiO3 (STO) nanocubes decorated with co-catalysts Ag nanoparticles (NPs) for H2 generation and organic dye Rhodamine B (RhB) photodegradation activity under UV and visible light irradiation was fabricated.
Method: The crystallinity, morphology, and chemical components of the photocatalyst were characterized through X-ray powder diffraction (XRD), scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX), respectively.
The optical properties were evaluated through the UV-Visible absorbance spectra.
Results: As a result, the photo-catalytic performance of the obtained Ag/STO hybrid photocatalyst was higher than that of the pristine STO nanocubes due to i) the efficient charge separation and transfer of photogenerated electron-holes pairs; ii) the improvement of the light-harvesting efficacy in the visible light.
The high photo-catalytic RhB decomposition of the achieved Ag/STO hybrid photo-catalytic was obtained compared to the pure SrTiO3 nanocubes under UV and visible light exposure.
The H2 generation of Ag/STO photocatalyst was 2- and 12-time higher than that of the pure STO nanocubes under UV and visible light illumination, respectively.
Conclusion: This study gives a general strategy for photocatalyst design towards water splitting for photo-catalytic H2 evolution and environmental deterioration.

Related Results

Plasmonic nanostructures in photodetection, energy conversion and beyond
Plasmonic nanostructures in photodetection, energy conversion and beyond
Abstract This review article aims to provide a comprehensive understanding of plasmonic nanostructures and their applications, especially on the integration of plasm...
DFT Study on Structural, Electronic and Optical Properties of Ag-Doped SrTiO3 Perovskite for Optoelectronic Applications
DFT Study on Structural, Electronic and Optical Properties of Ag-Doped SrTiO3 Perovskite for Optoelectronic Applications
This study addresses the first-principles analysis using generalized gradient approximation (GGA), which is pillared on density functional theory (DFT), to find the effects of silv...
Study on Magnetic and Plasmonic Properties of Fe3O4-PEI-Au and Fe3O4-PEI-Ag Nanoparticles
Study on Magnetic and Plasmonic Properties of Fe3O4-PEI-Au and Fe3O4-PEI-Ag Nanoparticles
Magnetic–plasmonic nanoparticles (NPs) have attracted great interest in many fields because they can exhibit more physical and chemical properties than individual magnetic or plasm...
Effect of Oriented Assemblies of SrTiO3 with Exposed (200) Plane on Photocatalytic Hydrogen Evolution
Effect of Oriented Assemblies of SrTiO3 with Exposed (200) Plane on Photocatalytic Hydrogen Evolution
AbstractThis study aims to investigate the effect of crystallographic orientation of the assemblies of SrTiO3 (formed on a glass substrate) on photocatalytic hydrogen evolution. Fo...
The Application of S‐transform Spectrum Decomposition Technique in Extraction of Weak Seismic Signals
The Application of S‐transform Spectrum Decomposition Technique in Extraction of Weak Seismic Signals
AbstractIn processing of deep seismic reflection data, when the frequency band difference between the weak useful signal and noise both from the deep subsurface is very small and h...
Conditional quantum plasmonic sensing
Conditional quantum plasmonic sensing
Abstract The possibility of using weak optical signals to perform sensing of delicate samples constitutes one of the main goals of quantum photonic sensing. Furtherm...
Gold cauldrons as efficient candidates for plasmonic tweezers
Gold cauldrons as efficient candidates for plasmonic tweezers
AbstractIn this report, gold cauldrons are proposed and proved as efficient candidates for plasmonic tweezers. Gold cauldrons benefit from high field localization in the vicinity o...
Plasmonic nanotechnology for photothermal applications – an evaluation
Plasmonic nanotechnology for photothermal applications – an evaluation
The application of plasmonic nanoparticles is motivated by the phenomenon of surface plasmon resonance. Owing to the tunability of optothermal properties and enhanced stability, th...

Back to Top