Javascript must be enabled to continue!
Role of guard-cell ABA in determining maximal stomatal aperture and prompt vapor-pressure-deficit response
View through CrossRef
AbstractAbscisic acid (ABA) is known to be involved in stomatal closure. However, its role in stomatal response to rapid increases in the vapor pressure deficit (VPD) is unclear. To study this issue, we generated guard cell (GC)-specific ABA-insensitive Arabidopsis plants (GC-specific abi1-1; GCabi). Under normal conditions, the stomatal conductance (gs) and apertures of GCabi plants were greater than those of control plants. This supports GC ABA role as limiting maximal stomatal aperture under non-stressful conditions. When there was a rapid increase in VPD (0.15 to 1 kPa), the gs and stomatal apertures of GCabi decreased in a manner similar that observed in the WT control, but different from that observed in WT plants treated with fusicoccin. Low VPD increased the size of the stomatal apertures of the WT, but not of GCabi. We conclude that GC ABA does not play a significant role in the initial, rapid stomatal closure that occurs in response to an increase in VPD, but is important for stomatal adaptation to ambient VPD. We propose a biphasic angiosperm VPD-sensing model that includes an initial passive-hydraulic, ABA-independent phase and a subsequent ABA-dependent steady-state phase in which stomatal behavior is optimized for ambient VPD conditions.HighlightGuard-cell ABA does not play a significant role in the immediate closure of stomata following an increase in the VPD, but is important for stomatal adaptation to ambient VPD.
Title: Role of guard-cell ABA in determining maximal stomatal aperture and prompt vapor-pressure-deficit response
Description:
AbstractAbscisic acid (ABA) is known to be involved in stomatal closure.
However, its role in stomatal response to rapid increases in the vapor pressure deficit (VPD) is unclear.
To study this issue, we generated guard cell (GC)-specific ABA-insensitive Arabidopsis plants (GC-specific abi1-1; GCabi).
Under normal conditions, the stomatal conductance (gs) and apertures of GCabi plants were greater than those of control plants.
This supports GC ABA role as limiting maximal stomatal aperture under non-stressful conditions.
When there was a rapid increase in VPD (0.
15 to 1 kPa), the gs and stomatal apertures of GCabi decreased in a manner similar that observed in the WT control, but different from that observed in WT plants treated with fusicoccin.
Low VPD increased the size of the stomatal apertures of the WT, but not of GCabi.
We conclude that GC ABA does not play a significant role in the initial, rapid stomatal closure that occurs in response to an increase in VPD, but is important for stomatal adaptation to ambient VPD.
We propose a biphasic angiosperm VPD-sensing model that includes an initial passive-hydraulic, ABA-independent phase and a subsequent ABA-dependent steady-state phase in which stomatal behavior is optimized for ambient VPD conditions.
HighlightGuard-cell ABA does not play a significant role in the immediate closure of stomata following an increase in the VPD, but is important for stomatal adaptation to ambient VPD.
Related Results
Aquaporin mediating stomatal closure is associated with water conservation under mild water deficit
Aquaporin mediating stomatal closure is associated with water conservation under mild water deficit
SummaryContradictory results indicate that aquaporins might facilitate the diffusion of both water and H2O2during abscisic acid (ABA) triggered stomatal closure. Here, we tested wh...
Effect of abscisic acid on rice defense mechanism against Fusarium oxysporum
Effect of abscisic acid on rice defense mechanism against Fusarium oxysporum
Fusarium oxysporum is one of the most destructive pathogens which causes rice seedling blight. ABA is part of a large signaling system that provides an effective system against mic...
Cometary Physics Laboratory: spectrophotometric experiments
Cometary Physics Laboratory: spectrophotometric experiments
<p><strong><span dir="ltr" role="presentation">1. Introduction</span></strong&...
ABA-dependent and ABA-independent functions of RCAR5/PYL11 in response to cold stress
ABA-dependent and ABA-independent functions of RCAR5/PYL11 in response to cold stress
AbstractArabidopsis thaliana has 14 abscisic acid (ABA) receptors—PYR1/PYLs/RCARs—which have diverse and redundant functions in ABA signaling; however, the precise role of these AB...
FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis
FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis
Abscisic acid (ABA) is a plant hormone that regulates plant growth and development and mediates abiotic stress responses. Direct cellular monitoring of dynamic ABA concentration ch...
Stomatal Response to High Evaporative Demand in Irrigated Grain Sorghum in Narrow and Wide Row Spacing
Stomatal Response to High Evaporative Demand in Irrigated Grain Sorghum in Narrow and Wide Row Spacing
AbstractStomatal activity of leaves can be related to factors under producer control, including row spacing and orientation. In both grain sorghum [Sorghum bicolor (L.) Moench] and...
Abscisic Acid Inhibits Cortical Microtubules Reorganization and Enhances Ultraviolet-B Tolerance in Arabidopsis thaliana
Abscisic Acid Inhibits Cortical Microtubules Reorganization and Enhances Ultraviolet-B Tolerance in Arabidopsis thaliana
Ultraviolet-B (UV-B) radiation is one of the important environmental factors limiting plant growth. Both abscisic acid (ABA) and microtubules have been previously reported to be in...

