Javascript must be enabled to continue!
Endothelial RAGE exacerbates acute postischaemic cardiac inflammation
View through CrossRef
SummaryAdvanced glycation end-products (AGEs) interact with their receptor RAGE, leading to an inflammatory state. We investigated the role of RAGE in postischaemic leukocyte adhesion after myocardial infarction and its effect on postischaemic myocardial function. Wildtype (WT), ICAM-1-/-, RAGE-/- or ICAM-1/RAGE-/- mice underwent 20 minutes (min) of LAD-occlusion followed by 15 min of reperfusion. We applied in vivo fluorescence microscopy visualising Rhodamine-6G labelled leukocytes. To differentiate between endothelial and leukocyte RAGE, we generated bone marrow chimeric mice. Invasive hemodynamic measurements were performed in mice undergoing 45 min of myocardial ischaemia (via LAD-occlusion) followed by 24 hours of reperfusion. Left-ventricular developed pressure (LVDP) was assessed by insertion of a millar-tip catheter into the left ventricle. In the acute model of myocardial ischaemia, leukocyte retention (WT 68 ± 4 cells/ hpf) was significantly reduced in ICAM-1-/- (40 ± 3 cells/hpf) and RAGE-/- mice (38 ± 4 cells/hpf). ICAM-1/RAGE-/- mice displayed an additive reduction of leukocyte retention (ICAM-1/RAGE-/- 15 ± 3 cells/ hpf). Ly-6G+ neutrophil were predominantly reduced in ICAM-1/RAGE-/- hearts (28%), whereas Ly-6C+ proinflammatory monocytes decreased to a lesser extent (55%). Interestingly, PMN recruitment was not affected in chimeric mice with RAGE deficiency in BM cells (WT mice reconstituted with ICAM-1/RAGE-/- BM: 55 ± 4 cells/hpf) while in mice with global RAGE deficiency (ICAM-1/RAGE-/- mice reconstituted with ICAM-1/RAGE-/- BM) leucocyte retention was significantly reduced (13 ± 1 cells/hpf), similar to non-transplanted ICAM/ RAGE-/- mice. Furthermore, postischaemic LVDP increased in ICAM-1/RAGE-/- animals (98 ± 4 mmHg vs 86 ± 4 mmHg in WT mice). In conclusion, combined deficiency of ICAM-1 and RAGE reduces leukocyte influx into infarcted myocardium and improves LV function during the acute phase after myocardial ischaemia and reperfusion. RAGE represents an additional pro-inflammatory endothelial mediator of ischaemia-reperfusion injury.
Title: Endothelial RAGE exacerbates acute postischaemic cardiac inflammation
Description:
SummaryAdvanced glycation end-products (AGEs) interact with their receptor RAGE, leading to an inflammatory state.
We investigated the role of RAGE in postischaemic leukocyte adhesion after myocardial infarction and its effect on postischaemic myocardial function.
Wildtype (WT), ICAM-1-/-, RAGE-/- or ICAM-1/RAGE-/- mice underwent 20 minutes (min) of LAD-occlusion followed by 15 min of reperfusion.
We applied in vivo fluorescence microscopy visualising Rhodamine-6G labelled leukocytes.
To differentiate between endothelial and leukocyte RAGE, we generated bone marrow chimeric mice.
Invasive hemodynamic measurements were performed in mice undergoing 45 min of myocardial ischaemia (via LAD-occlusion) followed by 24 hours of reperfusion.
Left-ventricular developed pressure (LVDP) was assessed by insertion of a millar-tip catheter into the left ventricle.
In the acute model of myocardial ischaemia, leukocyte retention (WT 68 ± 4 cells/ hpf) was significantly reduced in ICAM-1-/- (40 ± 3 cells/hpf) and RAGE-/- mice (38 ± 4 cells/hpf).
ICAM-1/RAGE-/- mice displayed an additive reduction of leukocyte retention (ICAM-1/RAGE-/- 15 ± 3 cells/ hpf).
Ly-6G+ neutrophil were predominantly reduced in ICAM-1/RAGE-/- hearts (28%), whereas Ly-6C+ proinflammatory monocytes decreased to a lesser extent (55%).
Interestingly, PMN recruitment was not affected in chimeric mice with RAGE deficiency in BM cells (WT mice reconstituted with ICAM-1/RAGE-/- BM: 55 ± 4 cells/hpf) while in mice with global RAGE deficiency (ICAM-1/RAGE-/- mice reconstituted with ICAM-1/RAGE-/- BM) leucocyte retention was significantly reduced (13 ± 1 cells/hpf), similar to non-transplanted ICAM/ RAGE-/- mice.
Furthermore, postischaemic LVDP increased in ICAM-1/RAGE-/- animals (98 ± 4 mmHg vs 86 ± 4 mmHg in WT mice).
In conclusion, combined deficiency of ICAM-1 and RAGE reduces leukocyte influx into infarcted myocardium and improves LV function during the acute phase after myocardial ischaemia and reperfusion.
RAGE represents an additional pro-inflammatory endothelial mediator of ischaemia-reperfusion injury.
Related Results
Abstract 2398: S100P/RAGE signaling activates AP1 and NF-kB in miR-21/RECK regulation
Abstract 2398: S100P/RAGE signaling activates AP1 and NF-kB in miR-21/RECK regulation
Abstract
The receptor for advanced glycation end-products (RAGE) plays a role in different pathological diseases including cancer. Several ligands activate RAGE, amo...
Receptor for Advanced Glycation End Products Regulates Adipocyte Hypertrophy and Insulin Sensitivity in Mice
Receptor for Advanced Glycation End Products Regulates Adipocyte Hypertrophy and Insulin Sensitivity in Mice
Receptor for advanced glycation end products (RAGE) has been shown to be involved in adiposity as well as atherosclerosis even in nondiabetic conditions. In this study, we examined...
RAGE deficiency ameliorates autoimmune hepatitis involving inhibition of IL-6 production via suppressing protein Arid5a in mice
RAGE deficiency ameliorates autoimmune hepatitis involving inhibition of IL-6 production via suppressing protein Arid5a in mice
Abstract
Activation of T cells and pro-inflammatory cytokines are essential for human autoimmune hepatitis. The receptor for advanced glycation end-product(RAGE) is one of ...
Breast Cancer Susceptibility Gene 2 Deficiency Exacerbates Angiotensin‐II‐induced Endothelial Dysfunction and Apoptosis
Breast Cancer Susceptibility Gene 2 Deficiency Exacerbates Angiotensin‐II‐induced Endothelial Dysfunction and Apoptosis
BackgroundGerm‐line mutations in the tumour suppressor genes BRCA1 and BRCA2 (BReast CAncer susceptibility genes 1 & 2) predispose carriers to breast cancer. BRCA1 and BRCA2 he...
Alagebrium Reduces Glomerular Fibrogenesis and Inflammation Beyond Preventing RAGE Activation in Diabetic Apolipoprotein E Knockout Mice
Alagebrium Reduces Glomerular Fibrogenesis and Inflammation Beyond Preventing RAGE Activation in Diabetic Apolipoprotein E Knockout Mice
Advanced glycation end products (AGEs) are important mediators of diabetic nephropathy that act through the receptor for AGEs (RAGE), as well as other mechanisms, to promote renal ...
Susceptibility towards Irradiation-Induced Bone Marrow (BM) Dysplasia in Vivo Is Determined by the BM Vasculogenic Phenotype: Correlation with MDS Patients BM Samples
Susceptibility towards Irradiation-Induced Bone Marrow (BM) Dysplasia in Vivo Is Determined by the BM Vasculogenic Phenotype: Correlation with MDS Patients BM Samples
Abstract
Bone marrow (BM) endothelial cells regulate hematopoiesis by promoting mobilization, survival and proliferation of hematopoietic progenitors. Interfering wi...
Mediator kinase submodule-dependent regulation of cardiac transcription
Mediator kinase submodule-dependent regulation of cardiac transcription
<p>Pathological cardiac remodeling results from myocardial stresses including pressure and volume overload, neurohumoral activation, myocardial infarction, and hypothyroidism...
Piezo1‐Mediated Mechanotransduction Contributes to Disturbed Flow‐Induced Atherosclerotic Endothelial Inflammation
Piezo1‐Mediated Mechanotransduction Contributes to Disturbed Flow‐Induced Atherosclerotic Endothelial Inflammation
Background
Disturbed flow generates oscillatory shear stress (OSS), which in turn leads to endothelial inflammation and atherosclerosis. Piezo1, a biomechanical force s...

