Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

P2Y1R and P2Y2R: potential molecular triggers in muscle regeneration

View through CrossRef
AbstractMuscle regeneration is indispensable for skeletal muscle health and daily life when injury, muscular disease, and aging occur. Among the muscle regeneration, muscle stem cells’ (MuSCs) activation, proliferation, and differentiation play a key role in muscle regeneration. Purines bind to its specific receptors during muscle development, which transmit environmental stimuli and play a crucial role of modulator of muscle regeneration. Evidences proved P2R expression during development and regeneration of skeletal muscle, both in human and mouse. In contrast to P2XR, which have been extensively investigated in skeletal muscles, the knowledge of P2YR in this tissue is less comprehensive. This review summarized muscle regeneration via P2Y1R and P2Y2R and speculated that P2Y1R and P2Y2R might be potential molecular triggers for MuSCs’ activation and proliferation via the p-ERK1/2 and PLC pathways, explored their cascade effects on skeletal muscle, and proposed P2Y1/2 receptors as potential pharmacological targets in muscle regeneration, to advance the purinergic signaling within muscle and provide promising strategies for alleviating muscular disease.
Title: P2Y1R and P2Y2R: potential molecular triggers in muscle regeneration
Description:
AbstractMuscle regeneration is indispensable for skeletal muscle health and daily life when injury, muscular disease, and aging occur.
Among the muscle regeneration, muscle stem cells’ (MuSCs) activation, proliferation, and differentiation play a key role in muscle regeneration.
Purines bind to its specific receptors during muscle development, which transmit environmental stimuli and play a crucial role of modulator of muscle regeneration.
Evidences proved P2R expression during development and regeneration of skeletal muscle, both in human and mouse.
In contrast to P2XR, which have been extensively investigated in skeletal muscles, the knowledge of P2YR in this tissue is less comprehensive.
This review summarized muscle regeneration via P2Y1R and P2Y2R and speculated that P2Y1R and P2Y2R might be potential molecular triggers for MuSCs’ activation and proliferation via the p-ERK1/2 and PLC pathways, explored their cascade effects on skeletal muscle, and proposed P2Y1/2 receptors as potential pharmacological targets in muscle regeneration, to advance the purinergic signaling within muscle and provide promising strategies for alleviating muscular disease.

Related Results

Poster 247: Muscle ERRγ Overexpression Mitigates the Muscle Atrophy after ACL injury
Poster 247: Muscle ERRγ Overexpression Mitigates the Muscle Atrophy after ACL injury
Objectives: Anterior cruciate ligament (ACL) reconstruction is the 6th most common orthopedic procedure performed in the United States (1,2). There is substantial evidence to sugge...
5. All That glitters is not gold
5. All That glitters is not gold
Abstract Introduction Inflammatory muscle disease is a rare but well-recognised manifestation of systemic vasculitis. It can pre...
Prostaglandin E2 Controls Skeletal Muscle Damage via The Activation of Anti-Apoptotic Birc-3
Prostaglandin E2 Controls Skeletal Muscle Damage via The Activation of Anti-Apoptotic Birc-3
Introduction: Prostaglandin E2 (PGE2) is a signaling molecule that has been shown to play a role in protecting skeletal muscle and enhancing regeneration1. PGE2 has an anti-inflamm...
NOX4 inhibition promotes the remodeling of dystrophic muscle
NOX4 inhibition promotes the remodeling of dystrophic muscle
ABSTRACTThe muscular dystrophies (MDs) are genetic muscle diseases that result in progressive muscle degeneration followed by the fibrotic replacement of affected muscles as regene...
Differential Diagnosis of Neurogenic Thoracic Outlet Syndrome: A Review
Differential Diagnosis of Neurogenic Thoracic Outlet Syndrome: A Review
Abstract Thoracic outlet syndrome (TOS) is a complex and often overlooked condition caused by the compression of neurovascular structures as they pass through the thoracic outlet. ...
Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice
Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice
Numerous stimulatory growth factors that can influence muscle regeneration are known. Recently, it has been demonstrated that neutralization of muscle growth inhibitory factors, su...
PGE2 and WNT3a Promote Skeletal Muscle Regeneration after Barium Chloride Damage In‐vitro
PGE2 and WNT3a Promote Skeletal Muscle Regeneration after Barium Chloride Damage In‐vitro
IntroductionAlthough skeletal muscle has a remarkable regenerative capacity, certain traumatic injuries are beyond the normal physiologic repair and require extensive regenerative ...
Applications of Small Molecules in Muscle Tissue Engineering
Applications of Small Molecules in Muscle Tissue Engineering
Introduction: Skeletal muscles account for about 40% of the total body weight. Every year, hundreds of people lose at least part of their muscle tissue due to illness, war, and acc...

Back to Top