Javascript must be enabled to continue!
Fault evolution and strain partitioning within deforming continents
View through CrossRef
[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Diffuse deformation within continents and over broad plate boundary zones deviates from the prediction of plate tectonics theory. Some of the deforming continents are now well delineated by space geodetic measurements, but the cause of such diffuse deformation remains poorly understood. My Ph.D. research focuses on two regions: 1) Fault evolution and Strain partitioning in Southern California: High-precision GPS measurements have enabled kinematic modeling of the present-day strain partitioning between these faults, but the causes of such strain partitioning and fault evolution remain uncertain. Using a three-dimensional viscoelasto-plastic finite element model, I have explored how the plate boundary fault system evolves to accommodate the relative plate motion in Southern California. My results show that, when the plate boundary faults are not optimally orientated to accommodate the relative plate motion, new faults will be initiated. In particular, the Big Bend of the San Andreas Fault, which is the main plate boundary fault, impedes the relative plate motion, thus forces the development of a system of secondary faults. 2) Active strain rates of crustal deformation in mainland China: In the past decades Chinese scientists and international teams have measured GPS velocities at more than a thousand sites in mainland China, allowing calculation of detailed spatial distribution of the crustal strain rates. Using the latest GPS data, I have calculated strain rates in different tectonic provinces in China and compared them with neotectonic data. I have also calculated strain rates using earthquakes and geological fault slip rates. The differences of strain rates derived from different data sets show the time-scale dependence of strain rates. Comparing GPS strain rates with seismic moment release patterns illustrates the limitations of using earthquake catalog for earthquake hazard analysis.
Title: Fault evolution and strain partitioning within deforming continents
Description:
[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.
] Diffuse deformation within continents and over broad plate boundary zones deviates from the prediction of plate tectonics theory.
Some of the deforming continents are now well delineated by space geodetic measurements, but the cause of such diffuse deformation remains poorly understood.
My Ph.
D.
research focuses on two regions: 1) Fault evolution and Strain partitioning in Southern California: High-precision GPS measurements have enabled kinematic modeling of the present-day strain partitioning between these faults, but the causes of such strain partitioning and fault evolution remain uncertain.
Using a three-dimensional viscoelasto-plastic finite element model, I have explored how the plate boundary fault system evolves to accommodate the relative plate motion in Southern California.
My results show that, when the plate boundary faults are not optimally orientated to accommodate the relative plate motion, new faults will be initiated.
In particular, the Big Bend of the San Andreas Fault, which is the main plate boundary fault, impedes the relative plate motion, thus forces the development of a system of secondary faults.
2) Active strain rates of crustal deformation in mainland China: In the past decades Chinese scientists and international teams have measured GPS velocities at more than a thousand sites in mainland China, allowing calculation of detailed spatial distribution of the crustal strain rates.
Using the latest GPS data, I have calculated strain rates in different tectonic provinces in China and compared them with neotectonic data.
I have also calculated strain rates using earthquakes and geological fault slip rates.
The differences of strain rates derived from different data sets show the time-scale dependence of strain rates.
Comparing GPS strain rates with seismic moment release patterns illustrates the limitations of using earthquake catalog for earthquake hazard analysis.
Related Results
Integration Techniques of Fault Detection and Isolation Using Interval Observers
Integration Techniques of Fault Detection and Isolation Using Interval Observers
An interval observer has been illustrated to be a suitable approach to detect and isolate faults affecting complex dynamical industrial systems.
Concerning fault detection, interv...
Decomposition and Evolution of Intracontinental Strike‐Slip Faults in Eastern Tibetan Plateau
Decomposition and Evolution of Intracontinental Strike‐Slip Faults in Eastern Tibetan Plateau
Abstract:Little attention had been paid to the intracontinental strike‐slip faults of the Tibetan Plateau. Since the discovery of the Longriba fault using re‐measured GPS data in 2...
Structural Characteristics and Evolution Mechanism of Paleogene Faults in the Central Dongying Depression, Bohai Bay Basin
Structural Characteristics and Evolution Mechanism of Paleogene Faults in the Central Dongying Depression, Bohai Bay Basin
Abstract
This study used the growth index, fault activity rate and fault distance burial depth curve methods to analyze the characteristics of fault activity in the central...
Low-temperature thermochronology of fault zones
Low-temperature thermochronology of fault zones
<p>Thermal signatures as well as timing of fault motions can be constrained by thermochronological analyses of fault-zone rocks (e.g., Tagami, 2012, 2019).&#1...
Permeability models for carbonate fault cores
Permeability models for carbonate fault cores
<p>The present contribution focuses on carbonates fault cores exposed in central and southern Italy, which crosscut Mesozoic limestones and dolostones, pertain to 10&...
Data-driven Fault Diagnosis for Cyber-Physical Systems
Data-driven Fault Diagnosis for Cyber-Physical Systems
The concept of Industry 4.0 uses cyber-physical systems and the Internet of Things to create "smart factories" that enable automated and connected production. However, the complex ...
Fault stability transition with slip and wear production: laboratory constraints
Fault stability transition with slip and wear production: laboratory constraints
Large earthquakes take place on mature faults with hundreds of meters to kilometres of cumulative slip. At shallow depths, the fault zone is generally composed of non-cohesive rock...
Correlation between the deformation of mineral crystal structures and fault activity: A case study of the Yingxiu-Beichuan fault and the Milin fault
Correlation between the deformation of mineral crystal structures and fault activity: A case study of the Yingxiu-Beichuan fault and the Milin fault
Abstract
The build-up and occurrence of earthquakes are due to the accumulation and release of stress in fault zones. When subjected to tectonic extrusion stress, th...

