Javascript must be enabled to continue!
Collocation Method for Multiplicative Noise Removal Model
View through CrossRef
Image denoising is a fundamental problem in both image processing and computer vision with numerous applications. It can be formulated as an inverse problem. Variational methods are commonly used to solve noise removal problems. The Total Variation (TV) regularization has evolved from an image denoising method for images corrupted with multiplicative noise into a more general technique for inverse problems such as denoising, deblurring, blind deconvolution, and inpainting, which also encompasses the Impulse, Poisson, Speckle, and mixed noise models. Multiplicative noise removal based on TV regularization has been widely researched in image science. In multiplicative noise problems, original image is multiplied by a noise rather than added to the original image. This article proposes a novel meshless collocation technique for the solution of a model having multiplicative noise. This technique includes TV and local collocation along with Multiquadric Radial Basis Function (MQ-RBF) for the solution of associated Euler-Lagrange equation for restoring multiplicative noise from digital images. Numerical examples demonstrate that the proposed algorithm is able to preserve small image details while the noise in the homogeneous regions is removed sufficiently. As a consequence, our method yields better denoised results than those of the current state of the art methods with respect to the Peak-Signal to Noise Ratio (PSNR) values.
Mehran University of Engineering and Technology
Title: Collocation Method for Multiplicative Noise Removal Model
Description:
Image denoising is a fundamental problem in both image processing and computer vision with numerous applications.
It can be formulated as an inverse problem.
Variational methods are commonly used to solve noise removal problems.
The Total Variation (TV) regularization has evolved from an image denoising method for images corrupted with multiplicative noise into a more general technique for inverse problems such as denoising, deblurring, blind deconvolution, and inpainting, which also encompasses the Impulse, Poisson, Speckle, and mixed noise models.
Multiplicative noise removal based on TV regularization has been widely researched in image science.
In multiplicative noise problems, original image is multiplied by a noise rather than added to the original image.
This article proposes a novel meshless collocation technique for the solution of a model having multiplicative noise.
This technique includes TV and local collocation along with Multiquadric Radial Basis Function (MQ-RBF) for the solution of associated Euler-Lagrange equation for restoring multiplicative noise from digital images.
Numerical examples demonstrate that the proposed algorithm is able to preserve small image details while the noise in the homogeneous regions is removed sufficiently.
As a consequence, our method yields better denoised results than those of the current state of the art methods with respect to the Peak-Signal to Noise Ratio (PSNR) values.
Related Results
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Abstarct
Introduction
Isolated brain hydatid disease (BHD) is an extremely rare form of echinococcosis. A prompt and timely diagnosis is a crucial step in disease management. This ...
Incidental Collocation Learning from Different Modes of Input and Factors That Affect Learning
Incidental Collocation Learning from Different Modes of Input and Factors That Affect Learning
Collocations, i.e., words that habitually co-occur in texts (e.g., strong coffee, heavy smoker), are ubiquitous in language and thus crucial for second/foreign language (L2) learne...
Novel/Old Generalized Multiplicative Zagreb Indices of Some Special Graphs
Novel/Old Generalized Multiplicative Zagreb Indices of Some Special Graphs
Topological descriptor is a fixed real number directly attached with the molecular graph to predict the physical and chemical properties of the chemical compound. Gutman and Trinaj...
Mechanism of suppressing noise intensity of squeezed state enhancement
Mechanism of suppressing noise intensity of squeezed state enhancement
This research focuses on advanced noise suppression technologies for high-precision measurement systems, particularly addressing the limitations of classical noise reducing approac...
Utjecaj poučavanja strategija učenja kolokacija na razvoj kolokacijske kompetencije u engleskome jeziku struke
Utjecaj poučavanja strategija učenja kolokacija na razvoj kolokacijske kompetencije u engleskome jeziku struke
The effect of collocation learning strategies instruction on collocational competence development in English for specific purposes. The topic of collocations in English has been ex...
A Comprehensive Review of Noise Measurement, Standards, Assessment, Geospatial Mapping and Public Health
A Comprehensive Review of Noise Measurement, Standards, Assessment, Geospatial Mapping and Public Health
Noise pollution is an emerging issue in cities around the world. Noise is a pernicious pollutant in urban landscapes mainly due to the increasing number of city inhabitants, road a...
Research Progress of Noise in High-Speed Cutting Machining
Research Progress of Noise in High-Speed Cutting Machining
High-speed cutting technology has become a development trend in the material processing industry. However, high-intensity noise generated during high-speed cutting exerts a potenti...
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...

