Javascript must be enabled to continue!
Melatonin Activation by Human Cytochrome P450 Enzymes: A Comparison between Different Isozymes
View through CrossRef
Cytochrome P450 enzymes in the human body play a pivotal role in both the biosynthesis and the degradation of the hormone melatonin. Melatonin plays a key role in circadian rhythms in the body, but its concentration is also linked to mood fluctuations as well as emotional well-being. In the present study, we present a computational analysis of the binding and activation of melatonin by various P450 isozymes that are known to yield different products and product distributions. In particular, the P450 isozymes 1A1, 1A2, and 1B1 generally react with melatonin to provide dominant aromatic hydroxylation at the C6-position, whereas the P450 2C19 isozyme mostly provides O-demethylation products. To gain insight into the origin of these product distributions of the P450 isozymes, we performed a comprehensive computational study of P450 2C19 isozymes and compared our work with previous studies on alternative isozymes. The work covers molecular mechanics, molecular dynamics and quantum mechanics approaches. Our work highlights major differences in the size and shape of the substrate binding pocket amongst the different P450 isozymes. Consequently, substrate binding and positioning in the active site varies substantially within the P450 isozymes. Thus, in P450 2C19, the substrate is oriented with its methoxy group pointing towards the heme, and therefore reacts favorably through hydrogen atom abstraction, leading to the production of O-demethylation products. On the other hand, the substrate-binding pockets in P450 1A1, 1A2, and 1B1 are tighter, direct the methoxy group away from the heme, and consequently activate an alternative site and lead to aromatic hydroxylation instead.
Title: Melatonin Activation by Human Cytochrome P450 Enzymes: A Comparison between Different Isozymes
Description:
Cytochrome P450 enzymes in the human body play a pivotal role in both the biosynthesis and the degradation of the hormone melatonin.
Melatonin plays a key role in circadian rhythms in the body, but its concentration is also linked to mood fluctuations as well as emotional well-being.
In the present study, we present a computational analysis of the binding and activation of melatonin by various P450 isozymes that are known to yield different products and product distributions.
In particular, the P450 isozymes 1A1, 1A2, and 1B1 generally react with melatonin to provide dominant aromatic hydroxylation at the C6-position, whereas the P450 2C19 isozyme mostly provides O-demethylation products.
To gain insight into the origin of these product distributions of the P450 isozymes, we performed a comprehensive computational study of P450 2C19 isozymes and compared our work with previous studies on alternative isozymes.
The work covers molecular mechanics, molecular dynamics and quantum mechanics approaches.
Our work highlights major differences in the size and shape of the substrate binding pocket amongst the different P450 isozymes.
Consequently, substrate binding and positioning in the active site varies substantially within the P450 isozymes.
Thus, in P450 2C19, the substrate is oriented with its methoxy group pointing towards the heme, and therefore reacts favorably through hydrogen atom abstraction, leading to the production of O-demethylation products.
On the other hand, the substrate-binding pockets in P450 1A1, 1A2, and 1B1 are tighter, direct the methoxy group away from the heme, and consequently activate an alternative site and lead to aromatic hydroxylation instead.
Related Results
Melatonin and mammary cancer: a short review.
Melatonin and mammary cancer: a short review.
Melatonin is an indolic hormone produced mainly by the pineal gland. The former hypothesis of its possible role in mammary cancer development was based on the evidence that melaton...
Biochemical characteristics of purified beef liver NADPH–cytochrome P450 reductase
Biochemical characteristics of purified beef liver NADPH–cytochrome P450 reductase
AbstractNADPH–cytochrome P450 reductase, an obligatory component of the cytochrome P450 dependent monooxygenase system, was purified to electrophoretic homogeneity from beef liver ...
Adrenergic and Cholinergic Regulation of in vitro Melatonin Release during Ontogeny in the Pineal Gland of Long Evans Rats
Adrenergic and Cholinergic Regulation of in vitro Melatonin Release during Ontogeny in the Pineal Gland of Long Evans Rats
Melatonin, produced by the pineal gland, plays an important role in a great variety of neuroendocrine functions. The rhythmic release of melatonin by the mammalian pineal gland is ...
A Novel Protective Mechanism for Melatonin Against Acute Lung Injury: Preserving Mitochondrial Dynamic Equilibrium of Lung Epithelial Cells Through SIRT3-Dependent Deacetylation of SOD2
A Novel Protective Mechanism for Melatonin Against Acute Lung Injury: Preserving Mitochondrial Dynamic Equilibrium of Lung Epithelial Cells Through SIRT3-Dependent Deacetylation of SOD2
Abstract
Mitochondrial dynamic equilibrium of lung epithelial cells is disturbed during sepsis, which contributes to abnormal mitochondrial function and acute lung injury (...
Melatonin and Seasonal Rhythms
Melatonin and Seasonal Rhythms
The pineal hormone melatonin plays a ubiquitous role in biology as a chemical mediator of the effects of season on animal physiology and behavior. Seasonal changes in night length ...
Therapeutic potential of melatonin in oral medicine and periodontology
Therapeutic potential of melatonin in oral medicine and periodontology
AbstractMelatonin (N‐acetyl‐5‐methoxy tryptamine) is a substance secreted by multiple organs in vertebrates. In addition to playing a part in the circadian cycle of the body, melat...
Ocular Melatonin Rhythms in Teleost Fish
Ocular Melatonin Rhythms in Teleost Fish
Melatonin (<i>N</i>-acetyl-5-methoxytryptamine) is synthesized in the pineal organ and the retina of vertebrates. In some teleost species, ocular melatonin levels can e...
The Second Protonation in the Bio-Catalytic Cycles of the Enzymes Cytochrome P450 and Superoxide Reductase
The Second Protonation in the Bio-Catalytic Cycles of the Enzymes Cytochrome P450 and Superoxide Reductase
The enzymes Cytochrome P450 and Superoxide Reductase, which have a similar coordination center [FeN4S], begin their biochemical cycles similarly. They absorb an oxygen molecule, ad...


