Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum

View through CrossRef
Nitrate enhanced the vanillin- and vanillate-dependent growth of Clostridium thermoaceticum. Under nitrate-enriched conditions, these aromatic substrates were subject to O demethylation. However, acetate, the normal product obtained from O demethylation, was not detected. Acetate was also not detected when methanol and CO cultures were supplemented with nitrate; glucose cultures likewise produced approximately one-third less acetate when enriched with nitrate. Reductant derived from the oxidation of these substrates was recovered in nitrite and ammonia. With an ammonia-limited medium employed to evaluate N turnover, the following stoichiometry was observed concomitantly with the consumption of 2.0 mM O-methyl groups (the recovery of nitrate-derived N approximated 89%): 3.9 mM NO3(-)-->2.8 mM NO2- +0.7 mM NH3. The results demonstrated that (i) nitrate was preferentially used as an electron sink under conditions that were otherwise acetogenic, (ii) nitrate dissimilation was energy conserving and growth supportive, and (iii) nitrate-coupled utilization of O-methyl groups conserved more energy than acetogenic O demethylation.
Title: Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum
Description:
Nitrate enhanced the vanillin- and vanillate-dependent growth of Clostridium thermoaceticum.
Under nitrate-enriched conditions, these aromatic substrates were subject to O demethylation.
However, acetate, the normal product obtained from O demethylation, was not detected.
Acetate was also not detected when methanol and CO cultures were supplemented with nitrate; glucose cultures likewise produced approximately one-third less acetate when enriched with nitrate.
Reductant derived from the oxidation of these substrates was recovered in nitrite and ammonia.
With an ammonia-limited medium employed to evaluate N turnover, the following stoichiometry was observed concomitantly with the consumption of 2.
0 mM O-methyl groups (the recovery of nitrate-derived N approximated 89%): 3.
9 mM NO3(-)-->2.
8 mM NO2- +0.
7 mM NH3.
The results demonstrated that (i) nitrate was preferentially used as an electron sink under conditions that were otherwise acetogenic, (ii) nitrate dissimilation was energy conserving and growth supportive, and (iii) nitrate-coupled utilization of O-methyl groups conserved more energy than acetogenic O demethylation.

Related Results

Old Acetogens, New Light
Old Acetogens, New Light
Acetogens utilize the acetyl‐CoA Wood‐Ljungdahl pathway as a terminal electron‐accepting, energy‐conserving, CO2‐fixing process. The decades of research to resolve the enzymology o...
Oxalate- and Glyoxylate-Dependent Growth and Acetogenesis by Clostridium thermoaceticum
Oxalate- and Glyoxylate-Dependent Growth and Acetogenesis by Clostridium thermoaceticum
The acetogenic bacterium Clostridium thermoaceticum ATCC 39073 grew at the expense of the two-carbon substrates oxalate and glyoxylate. Other two-carbon sub...
Resource recovery through simultaneous denitrification and fermentation in engineered anaerobic systems
Resource recovery through simultaneous denitrification and fermentation in engineered anaerobic systems
[EMBARGOED UNTIL 08/01/2025] Anaerobic digestion (AD) is widely used to process organic waste and is a promising platform for producing bioenergy and biomaterials. However, the fin...
Numerical Evaluation of Clearance Requirements Around Obstructions in Finned Heat Sinks
Numerical Evaluation of Clearance Requirements Around Obstructions in Finned Heat Sinks
This study uses CFD to consider the effects of obstructions (bosses) on the fluid flow and heat transfer in finned heat sinks used for cooling electronic components. In particular,...
Nitrate Surveillance Monitoring Program (Annual Report May 2021 - March 2022)
Nitrate Surveillance Monitoring Program (Annual Report May 2021 - March 2022)
Every Member State is required to monitor and report levels of nitrate in specified foodstuffs as part of the European Commission regulation and the UK also requires this informati...

Back to Top