Javascript must be enabled to continue!
Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)‐Ion Batteries
View through CrossRef
AbstractLithium‐ion batteries (LIBs) with higher energy density are very necessary to meet the increasing demand for devices with better performance. With the commercial success of lithiated graphite, other graphite intercalation compounds (GICs) have also been intensively reported, not only for LIBs, but also for other metal (Na, K, Al) ion batteries. In this Progress Report, we briefly review the application of GICs as anodes and cathodes in metal (Li, Na, K, Al) ion batteries. After a brief introduction on the development history of GICs, the electrochemistry of cationic GICs and anionic GICs is summarized. We further briefly summarize the use of cationic GICs and anionic GICs in alkali ion batteries and the use of anionic GICs in aluminium‐ion batteries. Finally, we reach some conclusions on the drawbacks, major progress, emerging challenges, and some perspectives on the development of GICs for metal (Li, Na, K, Al) ion batteries. Further development of GICs for metal (Li, Na, K, Al) ion batteries is not only a strong supplement to the commercialized success of lithiated‐graphite for LIBs, but also an effective strategy to develop diverse high‐energy batteries for stationary energy storage in the future.
Title: Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)‐Ion Batteries
Description:
AbstractLithium‐ion batteries (LIBs) with higher energy density are very necessary to meet the increasing demand for devices with better performance.
With the commercial success of lithiated graphite, other graphite intercalation compounds (GICs) have also been intensively reported, not only for LIBs, but also for other metal (Na, K, Al) ion batteries.
In this Progress Report, we briefly review the application of GICs as anodes and cathodes in metal (Li, Na, K, Al) ion batteries.
After a brief introduction on the development history of GICs, the electrochemistry of cationic GICs and anionic GICs is summarized.
We further briefly summarize the use of cationic GICs and anionic GICs in alkali ion batteries and the use of anionic GICs in aluminium‐ion batteries.
Finally, we reach some conclusions on the drawbacks, major progress, emerging challenges, and some perspectives on the development of GICs for metal (Li, Na, K, Al) ion batteries.
Further development of GICs for metal (Li, Na, K, Al) ion batteries is not only a strong supplement to the commercialized success of lithiated‐graphite for LIBs, but also an effective strategy to develop diverse high‐energy batteries for stationary energy storage in the future.
Related Results
Ion Intercalation into Vanadium Sulfides for Battery Applications
Ion Intercalation into Vanadium Sulfides for Battery Applications
Global battery manufacturing capacity will more than double by 2021 to about 280,000 megawatt-hours.1 Rechargeable batteries make up a significant fraction of battery manufacturing...
Surface Engineering of MXene-Based Materials for Next-Generation Rechargeable Batteries
Surface Engineering of MXene-Based Materials for Next-Generation Rechargeable Batteries
Next-generation rechargeable batteries are being developed to address challenges such as low cost, high stability, high energy density, and safe energy storage materials. MXene-bas...
Rechargeable Batteries: Regulating Electronic and Ionic Transports for High Electrochemical Performance
Rechargeable Batteries: Regulating Electronic and Ionic Transports for High Electrochemical Performance
AbstractRechargeable batteries are serving society and are continuing to develop according to application requirements. Recently, rechargeable batteries with high energy density, p...
Solid state lithium-ion rechargeable batteries: An overview
Solid state lithium-ion rechargeable batteries: An overview
Rechargeable solid-state Li-ion batteries have potential for applications in mobile devices and electric vehicles in the near future to meet the growing demand for high energy stor...
The Recent Advancement of Graphene‐Based Cathode Material for Rechargeable Zinc‐Air Batteries
The Recent Advancement of Graphene‐Based Cathode Material for Rechargeable Zinc‐Air Batteries
Graphene-based materials (GBMs) are a prospective material of choice for rechargeable battery electrodes because of their unique set of qualities, which include tunable interlayer ...
The Recent Advancement of Graphene-Based Cathode Material for Rechargeable Zinc–Air Batteries
The Recent Advancement of Graphene-Based Cathode Material for Rechargeable Zinc–Air Batteries
Graphene-based materials (GBMs) are a prospective material of choice for rechargeable battery electrodes because of their unique set of qualities, which include tunable interlayer ...
Progress Towards Magnesium-Ion Batteries
Progress Towards Magnesium-Ion Batteries
The efficient management of energy sources is critical to addressing future global energy demands. For example, the growing electrical energy storage needs of mobile and stationar...
Advances of Electroactive Metal–Organic Frameworks
Advances of Electroactive Metal–Organic Frameworks
AbstractThe preparation of electroactive metal–organic frameworks (MOFs) for applications of supercapacitors and batteries has received much attention and remarkable progress durin...

