Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

M1 Large-scale Network Dynamics Support Human Motor Resonance and Its Plastic Reshaping

View through CrossRef
ABSTRACTMotor resonance – the activation of the observer’s motor system when viewing others’ actions – grounds the intertwined nature of action perception and execution, with profound implications for social cognition and action understanding. Despite extensive research, the neural underpinnings supporting motor resonance emergence and rewriting remain unexplored.In this study, we investigated the role of sensorimotor associative learning in motor resonance neural mechanisms. To this aim, we applied cross-systems paired associative stimulation (PAS) to induce novel visuomotor associations in the human brain. This protocol, which repeatedly pairs transcranial magnetic stimulation (TMS) pulses over the primary motor cortex (M1) with visual stimuli of actions, drives the emergence of an atypical, PAS-conditioned motor resonance response. Using TMS and electroencephalography (EEG) co-registration during action observation, we tracked the M1 functional connectivity profile during this process to map the inter-areal connectivity profiles associated with typical and PAS-induced motor resonance phenomena.Besides confirming, at the corticospinal level, the emergence of newly acquired motor resonance responses at the cost of typical ones after PAS administration, our results reveal dissociable aspects of motor resonance in M1 interregional communication. On the one side, typical motor resonance effects acquired through the lifespan are associated with prominent M1 alpha-band and reduced beta-band connectivity, which might facilitate the corticospinal output while integrating visuomotor information. Conversely, the atypical PAS-induced motor resonance is linked to M1 beta-band cortical connectivity modulations, only partially overlapping with interregional communication patterns related to the typical mirroring responses. This evidence suggests that beta-phase synchronization may be the critical mechanism supporting the formation of motor resonance by coordinating the activity of motor regions during action observation, which also involves alpha-band top-down control of frontal areas.These findings provide new insights into the neural dynamics underlying (typical and newly acquired) motor resonance, highlighting the role of large-scale interregional communication in sensorimotor associative learning within the action observation network.
Title: M1 Large-scale Network Dynamics Support Human Motor Resonance and Its Plastic Reshaping
Description:
ABSTRACTMotor resonance – the activation of the observer’s motor system when viewing others’ actions – grounds the intertwined nature of action perception and execution, with profound implications for social cognition and action understanding.
Despite extensive research, the neural underpinnings supporting motor resonance emergence and rewriting remain unexplored.
In this study, we investigated the role of sensorimotor associative learning in motor resonance neural mechanisms.
To this aim, we applied cross-systems paired associative stimulation (PAS) to induce novel visuomotor associations in the human brain.
This protocol, which repeatedly pairs transcranial magnetic stimulation (TMS) pulses over the primary motor cortex (M1) with visual stimuli of actions, drives the emergence of an atypical, PAS-conditioned motor resonance response.
Using TMS and electroencephalography (EEG) co-registration during action observation, we tracked the M1 functional connectivity profile during this process to map the inter-areal connectivity profiles associated with typical and PAS-induced motor resonance phenomena.
Besides confirming, at the corticospinal level, the emergence of newly acquired motor resonance responses at the cost of typical ones after PAS administration, our results reveal dissociable aspects of motor resonance in M1 interregional communication.
On the one side, typical motor resonance effects acquired through the lifespan are associated with prominent M1 alpha-band and reduced beta-band connectivity, which might facilitate the corticospinal output while integrating visuomotor information.
Conversely, the atypical PAS-induced motor resonance is linked to M1 beta-band cortical connectivity modulations, only partially overlapping with interregional communication patterns related to the typical mirroring responses.
This evidence suggests that beta-phase synchronization may be the critical mechanism supporting the formation of motor resonance by coordinating the activity of motor regions during action observation, which also involves alpha-band top-down control of frontal areas.
These findings provide new insights into the neural dynamics underlying (typical and newly acquired) motor resonance, highlighting the role of large-scale interregional communication in sensorimotor associative learning within the action observation network.

Related Results

Tracking changes in corticospinal excitability during visuomotor paired associative stimulation to predict motor resonance rewriting
Tracking changes in corticospinal excitability during visuomotor paired associative stimulation to predict motor resonance rewriting
ABSTRACTMirror properties of the action observation network (AON) can be modulated through Hebbian-like associative plasticity using paired associative stimulation (PAS). We recent...
Towards Experimental Approaches to Advance Discovery of Clinically Meaningful Sensory-Motor Biomarkers
Towards Experimental Approaches to Advance Discovery of Clinically Meaningful Sensory-Motor Biomarkers
Atypical motor function is a highly prevalent clinical feature of autism spectrum disorder (ASD). Differences in motor function both persist across the lifespan and scale linearly...
Asymmetric directed functional connectivity within the frontoparietal motor network during motor imagery and execution
Asymmetric directed functional connectivity within the frontoparietal motor network during motor imagery and execution
AbstractBoth imagery and execution of motor controls consist of interactions within a neuronal network, including frontal motor-related regions and posterior parietal regions. To r...
Benchmarking analysis at establishing a culture of wellness
Benchmarking analysis at establishing a culture of wellness
This article aims to establish trends in motor development through basketball activities as a prerequisite for building a wellness culture, revealing the impact of basketball exerc...
Modelització i control d'accionaments elèctrics.
Modelització i control d'accionaments elèctrics.
L'actual situació energètica demanda cada cop més d'aplicacions que redueixin el consum energètic. A nivell d'energia elèctrica, i de la conversió d'aquesta a energia mecànica, els...
SISTEM KEAMANAN SEPEDA MOTOR MENGGUNAKAN MIKROKONTROLLER ARDUINO UNO R3 DENGAN SENSOR HC-SR501 DAN HC-SR04
SISTEM KEAMANAN SEPEDA MOTOR MENGGUNAKAN MIKROKONTROLLER ARDUINO UNO R3 DENGAN SENSOR HC-SR501 DAN HC-SR04
[Id]Pencurian sepeda motor pada saat ini semakin marak. Hal ini bisa terjadi di karenakan beberapa faktor selain kelalaian manusia yaitu masih belum adanya sistem keamanan sepeda m...

Back to Top