Javascript must be enabled to continue!
A novel model of volcanic plume evolution from high-temperature chemistry to reactive plume chemistry in the atmosphere
View through CrossRef
The first seconds of the interaction of volcanic gases with the atmosphere have so far often been drastically simplified, e.g., by assuming thermochemical equilibrium. In this period, hot and reduced magmatic gases mix with ambient air and undergo rapid cooling. The in-mixture of atmospheric oxygen triggers fast oxidation processes which depend on the dynamic interplay of chemical kinetics, mixing and cooling.We present a novel chemical box model, which can capture rapid chemical kinetics alongside cooling and mixing of the early plume. The model combines a chemical combustion mechanism with atmospheric chemistry mechanisms and includes sub-mechanisms for halogens, sulfur, reactive nitrogen and mercury, respectively. It is fast and flexible to test many different emission temperatures, mixing scenarios, eruption styles, and gas compositions.Here, we focus on the formation of reactive halogen species (e.g. bromine oxide (BrO), bromine chloride (BrCl), hypobromous acid (HOBr), and atomic bromine (Br)) during the first seconds, minute to hours of plume evolution, which significantly influence atmospheric chemistry on a regional scale. We study the impact of the high-temperature initializations on ambient-temperature plume chemistry to capture for example the catalytic destruction of ozone by bromine chemistry in the cooled plume. The simulations show that up to 40% of the emitted bromine can be converted into reactive forms within seconds. It promotes fast formation of BrO in the early evolution of the volcanic plume, at magnitudes consistent with UV-remote sensing measurements.We further assess the presence of reduced species (e.g. molecular hydrogen (H2) and carbon monoxide (CO)) in the cooled plume and potential implications for the interpretation of observations of redox pairs in the plume. Our kinetic model contrasts to previous thermochemical equilibrium assumptions of near-complete oxidation of H2 and CO. We identify emission temperatures and plume cooling conditions that allow these reduced species to persist whilst reactive bromine is formed, as well as conditions where the reduced species become oxidized.The combustion-atmospheric model is a unique tool for analyzing volcanic plume composition measurements as it provides the link to the original composition of the magmatic gas by a kinetic treatment of the magma-atmosphere interface. Future applications include the study of aerosol formation by SO2-sulfate transformation, mercury and NOx-nitrate chemistry.   
Title: A novel model of volcanic plume evolution from high-temperature chemistry to reactive plume chemistry in the atmosphere
Description:
The first seconds of the interaction of volcanic gases with the atmosphere have so far often been drastically simplified, e.
g.
, by assuming thermochemical equilibrium.
In this period, hot and reduced magmatic gases mix with ambient air and undergo rapid cooling.
The in-mixture of atmospheric oxygen triggers fast oxidation processes which depend on the dynamic interplay of chemical kinetics, mixing and cooling.
We present a novel chemical box model, which can capture rapid chemical kinetics alongside cooling and mixing of the early plume.
The model combines a chemical combustion mechanism with atmospheric chemistry mechanisms and includes sub-mechanisms for halogens, sulfur, reactive nitrogen and mercury, respectively.
It is fast and flexible to test many different emission temperatures, mixing scenarios, eruption styles, and gas compositions.
Here, we focus on the formation of reactive halogen species (e.
g.
bromine oxide (BrO), bromine chloride (BrCl), hypobromous acid (HOBr), and atomic bromine (Br)) during the first seconds, minute to hours of plume evolution, which significantly influence atmospheric chemistry on a regional scale.
We study the impact of the high-temperature initializations on ambient-temperature plume chemistry to capture for example the catalytic destruction of ozone by bromine chemistry in the cooled plume.
The simulations show that up to 40% of the emitted bromine can be converted into reactive forms within seconds.
It promotes fast formation of BrO in the early evolution of the volcanic plume, at magnitudes consistent with UV-remote sensing measurements.
We further assess the presence of reduced species (e.
g.
molecular hydrogen (H2) and carbon monoxide (CO)) in the cooled plume and potential implications for the interpretation of observations of redox pairs in the plume.
Our kinetic model contrasts to previous thermochemical equilibrium assumptions of near-complete oxidation of H2 and CO.
We identify emission temperatures and plume cooling conditions that allow these reduced species to persist whilst reactive bromine is formed, as well as conditions where the reduced species become oxidized.
The combustion-atmospheric model is a unique tool for analyzing volcanic plume composition measurements as it provides the link to the original composition of the magmatic gas by a kinetic treatment of the magma-atmosphere interface.
Future applications include the study of aerosol formation by SO2-sulfate transformation, mercury and NOx-nitrate chemistry.
   .
Related Results
Plume-SPH 1.0: A three-dimensional, dusty-gas volcanic plume model based on smoothed particle hydrodynamics
Plume-SPH 1.0: A three-dimensional, dusty-gas volcanic plume model based on smoothed particle hydrodynamics
Abstract. Plume-SPH provides the the first particle based simulation of volcanic plumes. SPH (smoothed particle hydrodynamics) has several advantages over currently used mesh based...
Plume–ridge interactions: ridgeward versus plate-drag plume flow
Plume–ridge interactions: ridgeward versus plate-drag plume flow
Abstract. The analysis of mid-ocean ridges and hotspots that are sourced by
deep-rooted mantle plumes allows us to get a glimpse of mantle structure and
dynamics. Dynamical interac...
Nitrates Production by Volcanic lightning during Explosive Eruptions
Nitrates Production by Volcanic lightning during Explosive Eruptions
Volcanic lightning during explosive eruptions has been suggested has a key process in the abiotic nitrogen fixation in the early Earth. Although laboratory experiences and thermody...
Zircon U‐Pb Geochronology and Geochemical Characteristics of the Volcanic Host Rocks from the Tongyu VHMS Copper Deposit in the Western North Qinling Orogen and Their Geological Significance
Zircon U‐Pb Geochronology and Geochemical Characteristics of the Volcanic Host Rocks from the Tongyu VHMS Copper Deposit in the Western North Qinling Orogen and Their Geological Significance
AbstractPrecise in situ zircon U‐Pb dating and Lu–Hf isotopic measurement using an LA‐ICP‐MS system, whole‐rock major and trace element geochemistry and Sr–Nd isotope geochemistry ...
Types and Eruption Patterns of the Carboniferous Volcanic Edifices in the Shixi Area, Junggar Basin
Types and Eruption Patterns of the Carboniferous Volcanic Edifices in the Shixi Area, Junggar Basin
The types of volcanic edifices and volcanic eruption patterns control the accumulation and distribution of oil and gas. By means of drillings, seismic data, and geochemical analysi...
Regional structural control on the Mont-Dore plio-quaternary volcanism (France)
Regional structural control on the Mont-Dore plio-quaternary volcanism (France)
<p>The relationship between volcanic and tectonic activity is well known. The volcanic activity strongly depend on the geodynamic context. This relationship is well h...
Monte-Carlo Model of Europa's Water Vapor Plumes
Monte-Carlo Model of Europa's Water Vapor Plumes
AbstractIt has long been postulated that Europa might have a sub-surface ocean covered by an icy crust. First clues for the existence of such a sub-surface ocean were obtained by t...
Examining the climate impacts of future volcanic eruptions 
Examining the climate impacts of future volcanic eruptions 
<p>Large explosive volcanic eruptions can induce global climate impacts on decadal to multi-decadal timescales. In current climate models, future volcanic eruptions a...


