Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Lorentz Atom Revisited by Solving the Abraham–Lorentz Equation of Motion

View through CrossRef
AbstractBy solving the non-relativistic Abraham–Lorentz (AL) equation, I demonstrate that the AL equation of motion is not suited for treating the Lorentz atom, because a steady-state solution does not exist. The AL equation serves as a tool, however, for deducing the appropriate parameters Ω and Γ to be used with the equation of forced oscillations in modelling the Lorentz atom. The electric polarisability, which many authors “derived” from the AL equation in recent years, is shown to violate Kramers–Kronig relations rendering obsolete the extracted photon-absorption rate, for example. Fortunately, errors turn out to be small quantitatively, as long as the light frequencyωis neither too close to nor too far from the resonance frequency Ω. The polarisability and absorption cross section are derived for the Lorentz atom by purely classical reasoning and are shown to agree with the quantum mechanical calculations of the same quantities. In particular, oscillator parameters Ω and Γ deduced by treating the atom as a quantum oscillator are found to be equivalent to those derived from the classical AL equation. The instructive comparison provides a deep insight into understanding the great success of Lorentz’s model that was suggested long before the advent of quantum theory.
Title: Lorentz Atom Revisited by Solving the Abraham–Lorentz Equation of Motion
Description:
AbstractBy solving the non-relativistic Abraham–Lorentz (AL) equation, I demonstrate that the AL equation of motion is not suited for treating the Lorentz atom, because a steady-state solution does not exist.
The AL equation serves as a tool, however, for deducing the appropriate parameters Ω and Γ to be used with the equation of forced oscillations in modelling the Lorentz atom.
The electric polarisability, which many authors “derived” from the AL equation in recent years, is shown to violate Kramers–Kronig relations rendering obsolete the extracted photon-absorption rate, for example.
Fortunately, errors turn out to be small quantitatively, as long as the light frequencyωis neither too close to nor too far from the resonance frequency Ω.
The polarisability and absorption cross section are derived for the Lorentz atom by purely classical reasoning and are shown to agree with the quantum mechanical calculations of the same quantities.
In particular, oscillator parameters Ω and Γ deduced by treating the atom as a quantum oscillator are found to be equivalent to those derived from the classical AL equation.
The instructive comparison provides a deep insight into understanding the great success of Lorentz’s model that was suggested long before the advent of quantum theory.

Related Results

Analisis Kebutuhan Modul Matematika untuk Meningkatkan Kemampuan Pemecahan Masalah Siswa SMP N 4 Batang
Analisis Kebutuhan Modul Matematika untuk Meningkatkan Kemampuan Pemecahan Masalah Siswa SMP N 4 Batang
Pemecahan masalah merupakan suatu usaha untuk menyelesaikan masalah matematika menggunakan pemahaman yang telah dimilikinya. Siswa yang mempunyai kemampuan pemecahan masalah rendah...
First-principles study of stability and electronic structure of N2H4 adsorption on NiFe(111) alloy surface
First-principles study of stability and electronic structure of N2H4 adsorption on NiFe(111) alloy surface
We use the density functional theory (DFT) with dispersion correction to investigate the stability and electronic structure of hydrazine (N2H4) adsorpted on Ni8Fe8/Ni (111) alloy s...
Control of flow around hydrofoil using the Lorentz force
Control of flow around hydrofoil using the Lorentz force
The Lorentz force can be used to control the boundary layer flow of low-conduction fluids; however, its lowest control efficiency has become the main bottleneck in its engineering ...
Bloch-state treatment of an atom in a standing-wave cavity
Bloch-state treatment of an atom in a standing-wave cavity
We use a basis of Bloch wave functions to solve the problem of spontaneous emission from an atom inside a standing-wave cavity. In this way we incorporate the effects of the atom’s...
Comparison of prospective and retrospective motion correction for Magnetic Resonance Imaging of the brain - Master's Thesis in Physics
Comparison of prospective and retrospective motion correction for Magnetic Resonance Imaging of the brain - Master's Thesis in Physics
Head motion is one of the most common sources of artefacts for Magnetic Resonance Imaging (MRI) of the brain. Especially children, being intimidated by the dimensions and the noise...
Optimal control for hover pendulum motion of unmanned helicopter
Optimal control for hover pendulum motion of unmanned helicopter
Purpose During the authors’ practical experiments about designing hover controller for unmanned helicopter, they find pendulum motion exists, thus destroying their expected control...
Categorizing Motion: Story-Based Categorizations
Categorizing Motion: Story-Based Categorizations
Our most primary goal is to provide a motion categorization for moving entities. A motion categorization that is related to how humans categorize motion, i.e., that is cognitive ...
The AABBA Graph Kernel: Atom–Atom, Bond–Bond, and Bond–Atom Autocorrelations for Machine Learning
The AABBA Graph Kernel: Atom–Atom, Bond–Bond, and Bond–Atom Autocorrelations for Machine Learning
Graphs are one of the most natural and powerful representations available for molecules; natural because they have an intuitive correspondence to skeletal formulas, the language us...

Back to Top