Javascript must be enabled to continue!
All-cellulose nanocomposites film from sisal fiber
View through CrossRef
In this work, self-reinforced cellulose nanocomposite films were produced using cellulose and nanofiber from sisal fiber as matrix and reinforcement, respectively. Cellulose nanofiber was prepared via catalytic oxidation using TEMPO/ NaClO/ NaClO2 system. By mild mechanical treatment in water, oxidized celluloses could be disintegrated into individual cellulose nanofiber and utilized as nanofiller. A morphology of TEMPO-oxidized cellulose nanofiber was characterized through transmission electron microscopy (TEM), which revealed nanosized fibrils with diameters in the range of 10–20 nm and at least 1 µm in length. These cellulosic nanofibers were subsequently impregnated in dissolved cellulose matrix which was prepared by dissolving sisal fiber in lithium chloride/N,N-dimethylacetamide solvent. The effects of reinforcement content in all-cellulose nanocomposite films were examined in terms of morphology, mechanical properties, physical properties, and thermal properties. The crystallinity of the nanocomposite films was increased as the cellulose nanofiber content went up. Even though tensile strength of 0.5% composite film was reduced from 40 to 29 MPa, elongation at break was greatly increased from 11% to 37%. These results mean that the nanocomposite films were tougher than the neat cellulose film. In addition, the cellulose nanofiber led to an improvement in the thermal stability of the nanocomposite films, as evidenced by an increment of the onset of the degradation temperature. The hydrophilicity of the nanocomposite film was decreased with an increasing amount of cellulose nanofiber. The % water absorption of the nanocomposite film was reduced from 202% to 150% with the addition of 2% nanofiber.
Title: All-cellulose nanocomposites film from sisal fiber
Description:
In this work, self-reinforced cellulose nanocomposite films were produced using cellulose and nanofiber from sisal fiber as matrix and reinforcement, respectively.
Cellulose nanofiber was prepared via catalytic oxidation using TEMPO/ NaClO/ NaClO2 system.
By mild mechanical treatment in water, oxidized celluloses could be disintegrated into individual cellulose nanofiber and utilized as nanofiller.
A morphology of TEMPO-oxidized cellulose nanofiber was characterized through transmission electron microscopy (TEM), which revealed nanosized fibrils with diameters in the range of 10–20 nm and at least 1 µm in length.
These cellulosic nanofibers were subsequently impregnated in dissolved cellulose matrix which was prepared by dissolving sisal fiber in lithium chloride/N,N-dimethylacetamide solvent.
The effects of reinforcement content in all-cellulose nanocomposite films were examined in terms of morphology, mechanical properties, physical properties, and thermal properties.
The crystallinity of the nanocomposite films was increased as the cellulose nanofiber content went up.
Even though tensile strength of 0.
5% composite film was reduced from 40 to 29 MPa, elongation at break was greatly increased from 11% to 37%.
These results mean that the nanocomposite films were tougher than the neat cellulose film.
In addition, the cellulose nanofiber led to an improvement in the thermal stability of the nanocomposite films, as evidenced by an increment of the onset of the degradation temperature.
The hydrophilicity of the nanocomposite film was decreased with an increasing amount of cellulose nanofiber.
The % water absorption of the nanocomposite film was reduced from 202% to 150% with the addition of 2% nanofiber.
Related Results
Reclaiming the Wasteland: Samson and Delilah and the Historical Perception and Construction of Indigenous Knowledges in Australian Cinema
Reclaiming the Wasteland: Samson and Delilah and the Historical Perception and Construction of Indigenous Knowledges in Australian Cinema
It was always based on a teenage love story between the two kids. One is a sniffer and one is not. It was designed for Central Australia because we do write these kids off there. N...
Alternative Entrances: Phillip Noyce and Sydney’s Counterculture
Alternative Entrances: Phillip Noyce and Sydney’s Counterculture
Phillip Noyce is one of Australia’s most prominent film makers—a successful feature film director with both iconic Australian narratives and many a Hollywood blockbuster under his ...
Investigation of Mechanical Properties of Short Sisal Fiber Reinforced Phenol Formaldehyde and Vinyl Ester Composites
Investigation of Mechanical Properties of Short Sisal Fiber Reinforced Phenol Formaldehyde and Vinyl Ester Composites
Composite materials are replacing standard Engineering metals and alloys for many applications. Here in this work, Sisal fiber is used as reinforcement. Since it is abundantly avai...
Analysis of Characteristics and Mechanical Properties of Yarn from Sisal Fiber as Raw Material for Making Kre' Alang Sumbawa Woven Fabric
Analysis of Characteristics and Mechanical Properties of Yarn from Sisal Fiber as Raw Material for Making Kre' Alang Sumbawa Woven Fabric
Kre’ Alang is a typical woven fabric of the Sumbawa community. Dependence on commercial yarn is the cause of the low value of Kre’ Alang compared to other regional sogket that have...
Mechanical Properties of Hybrid Composites on Epoxy Resin with Sisal Fiber, Carbon Fiber and Silicon Carbide
Mechanical Properties of Hybrid Composites on Epoxy Resin with Sisal Fiber, Carbon Fiber and Silicon Carbide
Composite materials offer huge upgrades over current accessible materials for various primary applications because of their fantastic mechanical qualities and moderately low thickn...
Spray Coated Nanocellulose Films Productions, Characterization and Application
Spray Coated Nanocellulose Films Productions, Characterization and Application
Nanocellulose (NC) is a biodegradable, renewable and sustainable material. It has strong potential to use as a functional material in various applications such as barriers, coating...
The Effects of Fiber Architecture and Fiber Surface Treatment on Physical Properties of Woven Sisal Fiber/Epoxy Composites
The Effects of Fiber Architecture and Fiber Surface Treatment on Physical Properties of Woven Sisal Fiber/Epoxy Composites
The aim of this work was to investigate the effects of fiber architecture and fiber surface treatment on flexural and impact properties of woven sisal fiber/epoxy composites. The w...
Preparation and Characterization of Cellulose and Microcrystalline Cellulose from Sugarcane Bagasse and Assessment of the Microcrystalline Cellulose as a Directly Compressible Excipient
Preparation and Characterization of Cellulose and Microcrystalline Cellulose from Sugarcane Bagasse and Assessment of the Microcrystalline Cellulose as a Directly Compressible Excipient
Cellulose, the most abundant biomass material in nature finds wide applications in the pharmaceutical industry. Sugarcane bagasse (SCB) is one of the main agricultural lignocellul...

