Javascript must be enabled to continue!
Gut Metabolite Urolithin A Inhibits Osteoclastogenesis and Senile Osteoporosis by Enhancing the Autophagy Capacity of Bone Marrow Macrophages
View through CrossRef
Senile osteoporosis (SOP) is a systemic bone disease that is significantly associated with age and eventually leads to deteriorated bone strength and increased fracture risk. Urolithin A (Uro-A) is a gut microbiome-derived compound that is mainly produced from pomegranates and some nuts. Uro-A has attracted great attention in recent years in view of its protective effects on aging-related diseases, including muscle dysfunction, kidney disease and knee injury. However, its protective influence and possible mechanisms in senile osteoporosis remain unclear. Our study describes the beneficial effect of Uro-A on bone marrow macrophages (BMMs). The in vitro results demonstrated that Uro-A inhibited receptor activator for nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in BMMs in a concentration-dependent manner. Uro-A significantly reduced the expression of osteoclast-related genes and bone resorption. Mechanistically, we found that the autophagy ability of BMMs was significantly enhanced in the early stage of Uro-A treatment, accompanied by the activation of LC3 and Beclin 1. At the same time, this enhanced autophagy activity was maintained until the later stage after stimulation with RANKL. Furthermore, we found that the MARK signaling pathway was blocked by Uro-A treatment. In a mouse model of aging, Uro-A effectively inhibited bone loss in the proximal femur, spine and tibia of aging mice. These results indicated that Uro-A is a robust and effective treatment for preventing senile osteoporosis bone loss.
Title: Gut Metabolite Urolithin A Inhibits Osteoclastogenesis and Senile Osteoporosis by Enhancing the Autophagy Capacity of Bone Marrow Macrophages
Description:
Senile osteoporosis (SOP) is a systemic bone disease that is significantly associated with age and eventually leads to deteriorated bone strength and increased fracture risk.
Urolithin A (Uro-A) is a gut microbiome-derived compound that is mainly produced from pomegranates and some nuts.
Uro-A has attracted great attention in recent years in view of its protective effects on aging-related diseases, including muscle dysfunction, kidney disease and knee injury.
However, its protective influence and possible mechanisms in senile osteoporosis remain unclear.
Our study describes the beneficial effect of Uro-A on bone marrow macrophages (BMMs).
The in vitro results demonstrated that Uro-A inhibited receptor activator for nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in BMMs in a concentration-dependent manner.
Uro-A significantly reduced the expression of osteoclast-related genes and bone resorption.
Mechanistically, we found that the autophagy ability of BMMs was significantly enhanced in the early stage of Uro-A treatment, accompanied by the activation of LC3 and Beclin 1.
At the same time, this enhanced autophagy activity was maintained until the later stage after stimulation with RANKL.
Furthermore, we found that the MARK signaling pathway was blocked by Uro-A treatment.
In a mouse model of aging, Uro-A effectively inhibited bone loss in the proximal femur, spine and tibia of aging mice.
These results indicated that Uro-A is a robust and effective treatment for preventing senile osteoporosis bone loss.
Related Results
Underweight Sebagai Faktor Resiko Osteoporosis Pada Lansia
Underweight Sebagai Faktor Resiko Osteoporosis Pada Lansia
Osteoporosis is a bone disease characterized by decreased bone density. The incidence of osteoporosis increases with age, especially age ≥ 50 years. Research from the International...
Arhgap21 Expression in Bone Marrow Niche Is Crucial for Hematopoietic Progenitor Homing and Short Term Reconstitution after Transplantation
Arhgap21 Expression in Bone Marrow Niche Is Crucial for Hematopoietic Progenitor Homing and Short Term Reconstitution after Transplantation
Abstract
The microenvironment of the bone marrow (BM) is essential for retention and migration of hematopoietic progenitor cells. ARHGAP21 is a negative regulator of...
Poster 107: The Use of Coacervate Sustained Release System to Identify the Most Potent BMP for Bone Regeneration
Poster 107: The Use of Coacervate Sustained Release System to Identify the Most Potent BMP for Bone Regeneration
Objectives: Bone morphogenetic proteins (BMPs) belong to the transforming growth factor superfamily that were first discovered by Marshall Urist. There are 14 BMPs identified to da...
Synovial osteoclastogenesis mediated by chondrocyte‐secreted TNFα promotes TMJ condylar resorption
Synovial osteoclastogenesis mediated by chondrocyte‐secreted TNFα promotes TMJ condylar resorption
AbstractBackgroundInsufficient occlusal support (IOS) frequently causes subchondral bone absorption in temporomandibular joint osteoarthritis, and the underlying mechanism requires...
The irradiated human mandible
The irradiated human mandible
Mandibular bone is known to be susceptible to irradiation damage, especially when radiation dose exceeds 50 Gy. This can result in compromised wound healing and ultimately osteorad...
Could rituximab be a silver lining in refractory bone marrow fibrosis caused by lupus?
Could rituximab be a silver lining in refractory bone marrow fibrosis caused by lupus?
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that can present with a variety of clinical manifestations, ranging from mild skin involvement to multisystemic ...
Urolithin B: Two-way attack on IAPP proteotoxicity with implications for diabetes
Urolithin B: Two-way attack on IAPP proteotoxicity with implications for diabetes
IntroductionDiabetes is one of the major metabolic diseases worldwide. Despite being a complex systemic pathology, the aggregation and deposition of Islet Amyloid Polypeptide (IAPP...
Abstract 1674: Inhibition of GSK3 reduces p70S6K activity and promotes autophagy independently of the JNK-cJun pathway.
Abstract 1674: Inhibition of GSK3 reduces p70S6K activity and promotes autophagy independently of the JNK-cJun pathway.
Abstract
Considering that a tumor promoting role for GSK3 has been suggested in pancreatic cancer (PC) cells and that GSK3 inhibitors are currently under clinical tr...

