Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Squeezing as a resource for time series processing in quantum reservoir computing

View through CrossRef
Squeezing is known to be a quantum resource in many applications in metrology, cryptography, and computing, being related to entanglement in multimode settings. In this work, we address the effects of squeezing in neuromorphic machine learning for time-series processing. In particular, we consider a loop-based photonic architecture for reservoir computing and address the effect of squeezing in the reservoir, considering a Hamiltonian with both active and passive coupling terms. Interestingly, squeezing can be either detrimental or beneficial for quantum reservoir computing when moving from ideal to realistic models, accounting for experimental noise. We demonstrate that multimode squeezing enhances its accessible memory, which improves the performance in several benchmark temporal tasks. The origin of this improvement is traced back to the robustness of the reservoir to readout noise, which is increased with squeezing.
Title: Squeezing as a resource for time series processing in quantum reservoir computing
Description:
Squeezing is known to be a quantum resource in many applications in metrology, cryptography, and computing, being related to entanglement in multimode settings.
In this work, we address the effects of squeezing in neuromorphic machine learning for time-series processing.
In particular, we consider a loop-based photonic architecture for reservoir computing and address the effect of squeezing in the reservoir, considering a Hamiltonian with both active and passive coupling terms.
Interestingly, squeezing can be either detrimental or beneficial for quantum reservoir computing when moving from ideal to realistic models, accounting for experimental noise.
We demonstrate that multimode squeezing enhances its accessible memory, which improves the performance in several benchmark temporal tasks.
The origin of this improvement is traced back to the robustness of the reservoir to readout noise, which is increased with squeezing.

Related Results

Advancements in Quantum Computing and Information Science
Advancements in Quantum Computing and Information Science
Abstract: The chapter "Advancements in Quantum Computing and Information Science" explores the fundamental principles, historical development, and modern applications of quantum co...
Evaluation of tunnels under squeezing rock condition
Evaluation of tunnels under squeezing rock condition
PurposeThe purpose of this study is to evaluate the methods employed for classifying and quantifying the potential of squeezing in tunnels. Along with the empirical and semi‐empiri...
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
The rapid expansion of the fintech sector has brought with it an increasing demand for robust and sophisticated fraud detection systems capable of managing large volumes of financi...
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
The rapid advancements in artificial intelligence (AI) and quantum computing have catalyzed an unprecedented shift in the methodologies utilized for healthcare diagnostics and trea...
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
The advent of quantum computing has introduced significant potential to revolutionize healthcare through quantum neural networks (QNNs), offering unprecedented capabilities in proc...
Quantum information outside quantum information
Quantum information outside quantum information
Quantum theory, as counter-intuitive as a theory can get, has turned out to make predictions of the physical world that match observations so precisely that it has been described a...
Quantum Computing Techniques for Numerical Linear Algebra in Computational Mathematics
Quantum Computing Techniques for Numerical Linear Algebra in Computational Mathematics
Quantum computing is a new and exciting area of computational mathematics that has the ability to solve very hard problems that traditional computing methods have not been able to ...

Back to Top