Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Investigation on the Structure and Fractal Characteristics of Nanopores in High-Rank Coal: Implications for the Methane Adsorption Capacity

View through CrossRef
The structure and fractal characteristics of nanopores of high-rank coal were investigated using an approach that integrates N2 adsorption and field emission scanning electron microscopy (FE-SEM). The results indicated that the high-rank coal of the Shanxi Formation has a complex pore-fracture network composed of organic matter pores, mineral-related pores, and microfractures. The pore type of high-rank coal tends to be complicated, and the main pore types are inkbottle pores and open pores, which are more conducive to methane enrichment. The Ro,max has a negative relationship with the total pore volume. In addition, the ash and inertinite contents show a positive correlation with the average pore size (APS), while the fixed carbon content exhibits a negative relationship with the APS. The pore structure of high-rank coal is controlled not only by the degree of metamorphism but also by coal composition, which leads to the variation in pore structure becoming more complicated. With the increase in coal metamorphism, high-rank coal with high amounts of fixed carbon content generally possesses a higher irregularity in pore structure. No obvious relationship was observed between D2 and the coal components, which indicates that the pore structure, ash content, moisture content and other factors controlled by the metamorphism of coal have different effects on D2 that lead to this inapparent relationship. A negative relationship exists between adsorption volume and D1, which indicates that the high irregularity of the pore structure is not conducive to methane absorption and that no obvious correlation exists between the adsorption volume and D2. In the high-rank coal, the high D1 value represents the complexity and heterogeneity of the pore structure and represents a low adsorption affinity for methane molecules; in addition, D2 has no effect on the methane adsorption capacity.
Title: Investigation on the Structure and Fractal Characteristics of Nanopores in High-Rank Coal: Implications for the Methane Adsorption Capacity
Description:
The structure and fractal characteristics of nanopores of high-rank coal were investigated using an approach that integrates N2 adsorption and field emission scanning electron microscopy (FE-SEM).
The results indicated that the high-rank coal of the Shanxi Formation has a complex pore-fracture network composed of organic matter pores, mineral-related pores, and microfractures.
The pore type of high-rank coal tends to be complicated, and the main pore types are inkbottle pores and open pores, which are more conducive to methane enrichment.
The Ro,max has a negative relationship with the total pore volume.
In addition, the ash and inertinite contents show a positive correlation with the average pore size (APS), while the fixed carbon content exhibits a negative relationship with the APS.
The pore structure of high-rank coal is controlled not only by the degree of metamorphism but also by coal composition, which leads to the variation in pore structure becoming more complicated.
With the increase in coal metamorphism, high-rank coal with high amounts of fixed carbon content generally possesses a higher irregularity in pore structure.
No obvious relationship was observed between D2 and the coal components, which indicates that the pore structure, ash content, moisture content and other factors controlled by the metamorphism of coal have different effects on D2 that lead to this inapparent relationship.
A negative relationship exists between adsorption volume and D1, which indicates that the high irregularity of the pore structure is not conducive to methane absorption and that no obvious correlation exists between the adsorption volume and D2.
In the high-rank coal, the high D1 value represents the complexity and heterogeneity of the pore structure and represents a low adsorption affinity for methane molecules; in addition, D2 has no effect on the methane adsorption capacity.

Related Results

Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines
Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines
Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions. History of coal mining shows ...
Coal
Coal
AbstractCoal is an organic, combustible, rock‐like natural substance that occurs in various forms from hard and brittle anthracite to soft and friable lignite. Coal is sometimes cl...
Study on Characteristics and Model Prediction of Methane Emissions in Coal Mines: A Case Study of Shanxi Province, China
Study on Characteristics and Model Prediction of Methane Emissions in Coal Mines: A Case Study of Shanxi Province, China
The venting of methane from coal mining is China’s main source of methane emissions. Accurate and up-to-date methane emission factors for coal mines are significant for reporting a...
Nanoscale pore structure in anthracite coals and its effect on methane adsorption capacity
Nanoscale pore structure in anthracite coals and its effect on methane adsorption capacity
Although significant amounts of methane are present in anthracite coal seams, coalbed methane resources cannot be extracted effectively and quickly. This study mainly focused on in...
Measurement and modeling of temperature evolution during methane desorption in coal
Measurement and modeling of temperature evolution during methane desorption in coal
AbstractThe decrease of coal temperature has been confirmed by many tests during methane desorption in coal, including coal and gas outburst, but the thermal-dynamic process for me...
Adaption of Theoretical Adsorption Model on Coal: Physical Structure
Adaption of Theoretical Adsorption Model on Coal: Physical Structure
With the motivation to investigate the role of coal physical structure on the adsorption performance of coal reservoir, 18 different types of coal samples with different coal struc...
Methane Emission Estimation Tools as a Basis for Sustainable Underground Mining of Gas-Bearing Coal Seams
Methane Emission Estimation Tools as a Basis for Sustainable Underground Mining of Gas-Bearing Coal Seams
Underground coal mining of gas-bearing coal seams is accompanied by the emission of large amounts of methane, which increases with depth. Coal seam methane is not only a major caus...
Adsorption of chlorophenol by activated carbon from mixtures of long flame coal and secondary coking products.
Adsorption of chlorophenol by activated carbon from mixtures of long flame coal and secondary coking products.
ADSORPTION OF CHLOROPHENOL BY ACTIVATED CARBON FROM MIXTURES OF LONG FLAME COAL AND SECONDARY COKING PRODUCTS © V.А. Кucherenko, Doctor of Chemical Sciences, Ju.V. Таmarkina, PhD i...

Back to Top