Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Advanced AlGaN/GaN HEMT technology, design, fabrication and characterization

View through CrossRef
Nowadays, the microelectronics technology is based on the mature and very well established silicon (Si) technology. However, Si exhibits some important limitations regarding its voltage blocking capability, operation temperature and switching frequency. In this sense, Gallium Nitride (GaN)-based high electron mobility transistors (HEMTs) devices have the potential to make this change possible. The unique combination of the high-breakdown field, the high-channel electron mobility of the two dimensional electron gas (2DEG), and high-temperature of operation has attracted enormous interest from social, academia and industry and in this context this PhD dissertation has been made. This thesis has focused on improving the device performance through the advanced design, fabrication and characterization of AlGaN/GaN HEMTs, primarily grown on Si templates. The first milestone of this PhD dissertation has been the establishment of a know-how on GaN HEMT technology from several points of view: the device design, the device modeling, the process fabrication and the advanced characterization primarily using devices fabricated at Centre de Recherche sur l'Hétéro-Epitaxie (CRHEA-CNRS) (France) in the framework of a collaborative project. In this project, the main workhorse of this dissertation was the explorative analysis performed on the AlGaN/GaN HEMTs by innovative electrical and physical characterization methods. A relevant objective of this thesis was also to merge the nanotechnology approach with the conventional characterization techniques at the device scale to understand the device performance. A number of physical characterization techniques have been imaginatively used during this PhD determine the main physical parameters of our devices such as the morphology, the composition, the threading dislocations density, the nanoscale conductive pattern and others. The conductive atomic force microscopy (CAFM) tool have been widely described and used to understand the conduction mechanisms through the AlGaN/GaN Ohmic contact by performing simultaneously topography and electrical conductivity measurements. As it occurs with the most of the electronic switches, the gate stack is maybe the critical part of the device in terms of performance and longtime reliability. For this reason, how the AlGaN/GaN HEMT gate contact affects the overall HEMT behaviour by means of advanced characterization and modeling has been intensively investigated. It is worth mentioning that the high-temperature characterization is also a cornerstone of this PhD. It has been reported the elevated temperature impact on the forward and the reverse leakage currents for analogous Schottky gate HEMTs grown on different substrates: Si, sapphire and free-standing GaN (FS-GaN). The HEMT' forward-current temperature coefficients (T^a) as well as the thermal activation energies have been determined in the range of 25-300 ºC. Besides, the impact of the elevated temperature on the Ohmic and gate contacts has also been investigated. The main results of the gold-free AlGaN/GaN HEMTs high-voltage devices fabricated with a 4 inch Si CMOS compatible technology at the clean room of the CNM in the framework of the industrial contract with ON semiconductor were presented. We have shown that the fabricated devices are in the state-of-the-art (gold-free Ohmic and Schottky contacts) taking into account their power device figure-of-merit ((VB^2)/Ron) of 4.05×10^8 W/cm^2. Basically, two different families of AlGaN/GaN-on-Si MIS-HEMTs devices were fabricated on commercial 4 inch wafers: (i) using a thin ALD HfO2 (deposited on the CNM clean room) and (ii) thin in-situ grown Si3N4, as a gate insulator (grown by the vendor). The scientific impact of this PhD in terms of science indicators is of 17 journal papers (8 as first author) and 10 contributions at international conferences.
Universitat Politècnica de Catalunya
Title: Advanced AlGaN/GaN HEMT technology, design, fabrication and characterization
Description:
Nowadays, the microelectronics technology is based on the mature and very well established silicon (Si) technology.
However, Si exhibits some important limitations regarding its voltage blocking capability, operation temperature and switching frequency.
In this sense, Gallium Nitride (GaN)-based high electron mobility transistors (HEMTs) devices have the potential to make this change possible.
The unique combination of the high-breakdown field, the high-channel electron mobility of the two dimensional electron gas (2DEG), and high-temperature of operation has attracted enormous interest from social, academia and industry and in this context this PhD dissertation has been made.
This thesis has focused on improving the device performance through the advanced design, fabrication and characterization of AlGaN/GaN HEMTs, primarily grown on Si templates.
The first milestone of this PhD dissertation has been the establishment of a know-how on GaN HEMT technology from several points of view: the device design, the device modeling, the process fabrication and the advanced characterization primarily using devices fabricated at Centre de Recherche sur l'Hétéro-Epitaxie (CRHEA-CNRS) (France) in the framework of a collaborative project.
In this project, the main workhorse of this dissertation was the explorative analysis performed on the AlGaN/GaN HEMTs by innovative electrical and physical characterization methods.
A relevant objective of this thesis was also to merge the nanotechnology approach with the conventional characterization techniques at the device scale to understand the device performance.
A number of physical characterization techniques have been imaginatively used during this PhD determine the main physical parameters of our devices such as the morphology, the composition, the threading dislocations density, the nanoscale conductive pattern and others.
The conductive atomic force microscopy (CAFM) tool have been widely described and used to understand the conduction mechanisms through the AlGaN/GaN Ohmic contact by performing simultaneously topography and electrical conductivity measurements.
As it occurs with the most of the electronic switches, the gate stack is maybe the critical part of the device in terms of performance and longtime reliability.
For this reason, how the AlGaN/GaN HEMT gate contact affects the overall HEMT behaviour by means of advanced characterization and modeling has been intensively investigated.
It is worth mentioning that the high-temperature characterization is also a cornerstone of this PhD.
It has been reported the elevated temperature impact on the forward and the reverse leakage currents for analogous Schottky gate HEMTs grown on different substrates: Si, sapphire and free-standing GaN (FS-GaN).
The HEMT' forward-current temperature coefficients (T^a) as well as the thermal activation energies have been determined in the range of 25-300 ºC.
Besides, the impact of the elevated temperature on the Ohmic and gate contacts has also been investigated.
The main results of the gold-free AlGaN/GaN HEMTs high-voltage devices fabricated with a 4 inch Si CMOS compatible technology at the clean room of the CNM in the framework of the industrial contract with ON semiconductor were presented.
We have shown that the fabricated devices are in the state-of-the-art (gold-free Ohmic and Schottky contacts) taking into account their power device figure-of-merit ((VB^2)/Ron) of 4.
05×10^8 W/cm^2.
Basically, two different families of AlGaN/GaN-on-Si MIS-HEMTs devices were fabricated on commercial 4 inch wafers: (i) using a thin ALD HfO2 (deposited on the CNM clean room) and (ii) thin in-situ grown Si3N4, as a gate insulator (grown by the vendor).
The scientific impact of this PhD in terms of science indicators is of 17 journal papers (8 as first author) and 10 contributions at international conferences.

Related Results

Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Gallium nitride (GaN) has great potential applications in high-power and high-frequency electrical devices due to its superior physical properties.High dislocation density of GaN g...
Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors
Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors
Systematic studies were performed on the influence of different cap layers of i-GaN, n-GaN, p-GaN and InGaN on AlGaN/GaN high-electron-mobility transistors (HEMTs) grown on sapphi...
Carrier Localization at Atomic‐Scale Compositional Fluctuations in Single AlGaN Nanowires with Nano‐Cathodoluminescence
Carrier Localization at Atomic‐Scale Compositional Fluctuations in Single AlGaN Nanowires with Nano‐Cathodoluminescence
Considerable interest has been generated to develop highly efficient deep ultraviolet (DUV) emitters using AlGaN‐based alloys with direct bandgaps between 3.4 – 6.1 eV for a broad ...
Advanced HEMT Characteristics of Epitaxial Quality-improved GaN by Using Patterned Sapphire Substract
Advanced HEMT Characteristics of Epitaxial Quality-improved GaN by Using Patterned Sapphire Substract
INTRODUCTION Accomplishing with the booming market of personal communication services and the fifth generation (5G) mobile systems, the demands for high frequency an...
Effects of interface states and temperature on the C-V behavior of metal/insulator/AlGaN/GaN heterostructure capacitors
Effects of interface states and temperature on the C-V behavior of metal/insulator/AlGaN/GaN heterostructure capacitors
The impact of states at the insulator/AlGaN interface on the capacitance-voltage (C-V) characteristics of a metal/insulator/AlGaN/GaN heterostructure (MISH) capacitor was examined ...
Base Transit Time in Abrupt GaN/InGaN/GaN and AlGaN/GaN/AlGaN HBTs
Base Transit Time in Abrupt GaN/InGaN/GaN and AlGaN/GaN/AlGaN HBTs
AbstractBase transit time, τb, in abrupt npn GaN/InGaN/GaN and AlGaN/GaN/AlGaN double heterojunction bipolar transistors (DHBTs) is reported. Base transit time strongly depends not...
Growth of AlGaN/GaN heterojunction field effect transistors on semi-insulating GaN using an AlGaN interlayer
Growth of AlGaN/GaN heterojunction field effect transistors on semi-insulating GaN using an AlGaN interlayer
Semi-insulating (SI) GaN layers were grown on 4H-SiC substrates by inserting an AlGaN layer between the AlN buffer and the GaN layer. Secondary ion mass spectroscopy measurements s...

Back to Top