Javascript must be enabled to continue!
Chemistry on Rotating Grain Surfaces: Ro-thermal Desorption of Molecules from Ice Mantles
View through CrossRef
Abstract
It is widely believed that water and complex organic molecules (COMs) first form in the ice mantle of dust grains and are subsequently returned into the gas due to grain heating by intense radiation of protostars. Previous research on the desorption of molecules from the ice mantle assumed that grains are at rest, which is contrary to the fact that grains are suprathermally rotating as a result of their interaction with an anisotropic radiation or gas flow. To clearly understand how molecules are released into the gas phase, the effect of grain suprathermal rotation on surface chemistry must be quantified. In this paper, we study the effect of suprathermal rotation of dust grains spun-up by radiative torques on the desorption of molecules from icy grain mantles around protostars. We show that centrifugal potential energy due to grain rotation reduces the potential barrier of molecules and significantly enhances their desorption rate. We term this mechanism rotational-thermal or ro-thermal desorption. We apply the ro-thermal mechanism for studying the desorption of molecules from icy grains that are simultaneously heated to high temperatures and spun-up to suprathermal rotation by an intense radiation of protostars. We find that ro-thermal desorption is much more efficient than thermal desorption for molecules with high binding energy such as water and COMs. Our results have important implications for understanding the origin of COMs detected in star-forming regions and call for attention to the effect of suprathermal rotation of icy grains to use molecules as a tracer of physical conditions of star-forming regions.
Title: Chemistry on Rotating Grain Surfaces: Ro-thermal Desorption of Molecules from Ice Mantles
Description:
Abstract
It is widely believed that water and complex organic molecules (COMs) first form in the ice mantle of dust grains and are subsequently returned into the gas due to grain heating by intense radiation of protostars.
Previous research on the desorption of molecules from the ice mantle assumed that grains are at rest, which is contrary to the fact that grains are suprathermally rotating as a result of their interaction with an anisotropic radiation or gas flow.
To clearly understand how molecules are released into the gas phase, the effect of grain suprathermal rotation on surface chemistry must be quantified.
In this paper, we study the effect of suprathermal rotation of dust grains spun-up by radiative torques on the desorption of molecules from icy grain mantles around protostars.
We show that centrifugal potential energy due to grain rotation reduces the potential barrier of molecules and significantly enhances their desorption rate.
We term this mechanism rotational-thermal or ro-thermal desorption.
We apply the ro-thermal mechanism for studying the desorption of molecules from icy grains that are simultaneously heated to high temperatures and spun-up to suprathermal rotation by an intense radiation of protostars.
We find that ro-thermal desorption is much more efficient than thermal desorption for molecules with high binding energy such as water and COMs.
Our results have important implications for understanding the origin of COMs detected in star-forming regions and call for attention to the effect of suprathermal rotation of icy grains to use molecules as a tracer of physical conditions of star-forming regions.
Related Results
Near-Surface Properties of Europa Constrained by the Galileo PPR Measurements
Near-Surface Properties of Europa Constrained by the Galileo PPR Measurements
NASA's Europa Clipper mission will characterize the current and recent surface activity of the icy-moon Europa through a wide range of remote sensing observations. In particular, t...
Grain growth of polycrystalline ice doped with soluble impurities
Grain growth of polycrystalline ice doped with soluble impurities
The grain size of polycrystalline ice affects key parameters related to planetary evolution such as the rheological and dielectric properties of Earth's glaciers and ice sheets as ...
Grain size evolution and heat transfer regime in the shells of icy moons
Grain size evolution and heat transfer regime in the shells of icy moons
IntroductionTogether with the ice shell thickness, grain size due to its effect on viscosity is perhaps the most crucial parameter determining the heat transfer regime inside the ...
Effect of ocean heat flux on Titan's topography and tectonic stresses
Effect of ocean heat flux on Titan's topography and tectonic stresses
INTRODUCTIONThe thermo-mechanical evolution of Titan's ice shell is primarily controlled by the mode of the heat transfer in the ice shell and the amount of heat coming from the oc...
Viscous relaxation of Pluto's ice shell below Sputnik Planitia
Viscous relaxation of Pluto's ice shell below Sputnik Planitia
AbstractThe surface of Pluto is dominated by the Sputnik Planitia basin, possibly caused by an impact ~ 4 Gyr ago. To explain basin's unlikely position close to tidal axis with Cha...
Grain growth of ice doped with soluble impurities
Grain growth of ice doped with soluble impurities
Abstract. The grain size of polycrystalline ice affects key parameters related to the dynamics of ice masses, such as the rheological and dielectric properties of terrestrial ice f...
Wind tunnel experimentation of ice particles transport in Martian-like environment
Wind tunnel experimentation of ice particles transport in Martian-like environment
Introduction:  The transport of ice by wind plays a major role in the surface mass balance of polar caps [1, 2]. Ice can be redistributed by wind due to (1) transport of i...
Eccentricity variations trigger “subduction” in Europa’s ice shell
Eccentricity variations trigger “subduction” in Europa’s ice shell
IntroductionIcy moon Europa possesses one of the youngest surfaces in the Solar System. Overall smooth, yet rich in unique tectonic features, it records mostly extensional processe...

