Javascript must be enabled to continue!
Integrating contextual sentiment analysis in collaborative recommender systems
View through CrossRef
Recently. recommender systems have become a very crucial application in the online market and e-commerce as users are often astounded by choices and preferences and they need help finding what the best they are looking for. Recommender systems have proven to overcome information overload issues in the retrieval of information, but still suffer from persistent problems related to cold-start and data sparsity. On the flip side, sentiment analysis technique has been known in translating text and expressing user preferences. It is often used to help online businesses to observe customers’ feedbacks on their products as well as try to understand customer needs and preferences. However, the current solution for embedding traditional sentiment analysis in recommender solutions seems to have limitations when involving multiple domains. Therefore, an issue called domain sensitivity should be addressed. In this paper, a sentiment-based model with contextual information for recommender system was proposed. A novel solution for domain sensitivity was proposed by applying a contextual information sentiment-based model for recommender systems. In evaluating the contributions of contextual information in sentiment-based recommendations, experiments were divided into standard rating model, standard sentiment model and contextual information model. Results showed that the proposed contextual information sentiment-based model illustrates better performance as compared to the traditional collaborative filtering approach.
Public Library of Science (PLoS)
Title: Integrating contextual sentiment analysis in collaborative recommender systems
Description:
Recently.
recommender systems have become a very crucial application in the online market and e-commerce as users are often astounded by choices and preferences and they need help finding what the best they are looking for.
Recommender systems have proven to overcome information overload issues in the retrieval of information, but still suffer from persistent problems related to cold-start and data sparsity.
On the flip side, sentiment analysis technique has been known in translating text and expressing user preferences.
It is often used to help online businesses to observe customers’ feedbacks on their products as well as try to understand customer needs and preferences.
However, the current solution for embedding traditional sentiment analysis in recommender solutions seems to have limitations when involving multiple domains.
Therefore, an issue called domain sensitivity should be addressed.
In this paper, a sentiment-based model with contextual information for recommender system was proposed.
A novel solution for domain sensitivity was proposed by applying a contextual information sentiment-based model for recommender systems.
In evaluating the contributions of contextual information in sentiment-based recommendations, experiments were divided into standard rating model, standard sentiment model and contextual information model.
Results showed that the proposed contextual information sentiment-based model illustrates better performance as compared to the traditional collaborative filtering approach.
Related Results
Sentiment Analysis with Python: A Hands-on Approach
Sentiment Analysis with Python: A Hands-on Approach
Sentiment Analysis is a rapidly growing field in Natural Language Processing (NLP) that aims to extract opinions, emotions, and attitudes expressed in text. It has a wide range o...
Privacy Risk in Recommender Systems
Privacy Risk in Recommender Systems
Nowadays, recommender systems are mostly used in many online applications to filter information and help users in selecting their relevant requirements. It avoids users to become o...
Development of E-Commerce Website Recommender System Using Collaborative Filtering and Deep Learning Techniques
Development of E-Commerce Website Recommender System Using Collaborative Filtering and Deep Learning Techniques
Recommender system or recommendation system is becoming an increasingly important technology on e-commerce websites to help users find products that suit their preferences. However...
Intelligent healthcare recommender system for advanced healthcare services
Intelligent healthcare recommender system for advanced healthcare services
The introduction of cutting-edge technologies has brought about a lot of changes in the healthcare industry. The application of intelligent recommender systems to improve healthcar...
Recommender System for E-Health
Recommender System for E-Health
Introduction; E-healthcare management services can be significantly enhanced through the implementation of recommender systems, as highlighted in various research papers. These sys...
Forex Sentiment Analysis with Python
Forex Sentiment Analysis with Python
The most important catalysts for forex market movements are news, economic data, and also market sentiment. Market sentiment refers to the overall attitude of traders toward a part...
Sentiment analysis of students in ideological and political teaching based on artificial intelligence and data mining
Sentiment analysis of students in ideological and political teaching based on artificial intelligence and data mining
In order to improve the efficiency of sentiment analysis of students in ideological and political classrooms, under the guidance of artificial intelligence ideas, this paper combin...
How Should College Physical Education (CPE) Conduct Collaborative Governance? A Survey Based on Chinese Colleges
How Should College Physical Education (CPE) Conduct Collaborative Governance? A Survey Based on Chinese Colleges
Background and Aim: College physical education (CPE) is a Key Stage in the transition from school physical education to national sports. Collaborative governance is an effective ne...


