Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Extending the parking space

View through CrossRef
The action of the symmetric group $S_n$ on the set $\mathrm{Park}_n$ of parking functions of size $n$ has received a great deal of attention in algebraic combinatorics. We prove that the action of $S_n$ on $\mathrm{Park}_n$ extends to an action of $S_{n+1}$. More precisely, we construct a graded $S_{n+1}$-module $V_n$ such that the restriction of $V_n$ to $S_n$ is isomorphic to $\mathrm{Park}_n$. We describe the $S_n$-Frobenius characters of the module $V_n$ in all degrees and describe the $S_{n+1}$-Frobenius characters of $V_n$ in extreme degrees. We give a bivariate generalization $V_n^{(\ell, m)}$ of our module $V_n$ whose representation theory is governed by a bivariate generalization of Dyck paths. A Fuss generalization of our results is a special case of this bivariate generalization. L’action du groupe symétrique $S_n$ sur l’ensemble $\mathrm{Park}_n$ des fonctions de stationnement de longueur $n$ a reçu beaucoup d’attention dans la combinatoire algébrique. Nous démontrons que l’action de $S_n$ sur $\mathrm{Park}_n$ s’étend à une action de $S_{n+1}$. Plus précisément, nous construisons un gradué $S_{n+1}$-module $V_n$ telles que la restriction de $S_n$ est isomorphe à $\mathrm{Park}_n$. Nous décrivons la $S_n$-Frobenius caractères des modules $V_n$ à tous les degrés et décrivent le $S_{n+1}$-Frobenius caractères de $V_n$ en degrés extrêmes. Nous donnons une généralisation bivariée $V_n^{(\ell, m)}$ de notre module $V_n$ dont la représentation théorie est régie par une généralisation bivariée des chemins de Dyck. Une généralisation Fuss de nos résultats est un cas particulier de cette généralisation bivariée.
Centre pour la Communication Scientifique Directe (CCSD)
Title: Extending the parking space
Description:
The action of the symmetric group $S_n$ on the set $\mathrm{Park}_n$ of parking functions of size $n$ has received a great deal of attention in algebraic combinatorics.
We prove that the action of $S_n$ on $\mathrm{Park}_n$ extends to an action of $S_{n+1}$.
More precisely, we construct a graded $S_{n+1}$-module $V_n$ such that the restriction of $V_n$ to $S_n$ is isomorphic to $\mathrm{Park}_n$.
We describe the $S_n$-Frobenius characters of the module $V_n$ in all degrees and describe the $S_{n+1}$-Frobenius characters of $V_n$ in extreme degrees.
We give a bivariate generalization $V_n^{(\ell, m)}$ of our module $V_n$ whose representation theory is governed by a bivariate generalization of Dyck paths.
A Fuss generalization of our results is a special case of this bivariate generalization.
L’action du groupe symétrique $S_n$ sur l’ensemble $\mathrm{Park}_n$ des fonctions de stationnement de longueur $n$ a reçu beaucoup d’attention dans la combinatoire algébrique.
Nous démontrons que l’action de $S_n$ sur $\mathrm{Park}_n$ s’étend à une action de $S_{n+1}$.
Plus précisément, nous construisons un gradué $S_{n+1}$-module $V_n$ telles que la restriction de $S_n$ est isomorphe à $\mathrm{Park}_n$.
Nous décrivons la $S_n$-Frobenius caractères des modules $V_n$ à tous les degrés et décrivent le $S_{n+1}$-Frobenius caractères de $V_n$ en degrés extrêmes.
Nous donnons une généralisation bivariée $V_n^{(\ell, m)}$ de notre module $V_n$ dont la représentation théorie est régie par une généralisation bivariée des chemins de Dyck.
Une généralisation Fuss de nos résultats est un cas particulier de cette généralisation bivariée.

Related Results

Pelaksanaan Pemungutan Retribusi Parkir Di Kota Bajawa
Pelaksanaan Pemungutan Retribusi Parkir Di Kota Bajawa
This research aims to find out how the implementation of parking retribution in Bajawa City and the supporting and inhibiting factors of parking retribution implementation. This re...
Application of android-based parking violations reporting system to support green campus program
Application of android-based parking violations reporting system to support green campus program
The use of private vehicles by the academic community of Sebelas Maret University (UNS) is increasing every year. This has resulted in a reduced availability of vehicle parking spa...
Strategi Penanganan Kemacetan Arus Lalu Lintas Berdasarkan Persepsi Masyarakat
Strategi Penanganan Kemacetan Arus Lalu Lintas Berdasarkan Persepsi Masyarakat
Abstrak: Pasar sangatlah identik dengan pusat keramaian, karena pasar merupakan pusat perdagangan yang terletak di pusat kota yang sering disebut juga dengan kawasan Central Bussin...
Sistem Pembayaran Parkir Non-Tunai Berbasis Mikrokontroler dengan Metode Template Matching
Sistem Pembayaran Parkir Non-Tunai Berbasis Mikrokontroler dengan Metode Template Matching
Parking is an activity to stop or store vehicles in a place that has been provided in public places that have a parking system. The parking system is a system that is applied to a ...
POTENSI PENGENDALIAN ON STREET PARKING DI RUAS JALAN DAMAR KOTA PADANG
POTENSI PENGENDALIAN ON STREET PARKING DI RUAS JALAN DAMAR KOTA PADANG
The Damar road section is a connecting lane for the Pasar Raya Padang area which starting to face parking problem. The indicator is the disruption of the flow and the high accumula...
Integration of YOLOv5 Algorithm and OpenCV in Innovative Smart Parking Management Approach
Integration of YOLOv5 Algorithm and OpenCV in Innovative Smart Parking Management Approach
The problem of automatic parking lot identification and vehicle detection in open areas is becoming increasingly important due to the increase in the number of vehicles in Indonesi...
Smart Vehicle Parking System with Rfid-Based Authentication and Ai-Powered Slot Detection
Smart Vehicle Parking System with Rfid-Based Authentication and Ai-Powered Slot Detection
As the population of cities grows and the need for transportation increases, urban parking congestion is becoming a bigger issue. The study highlights the need for smart parking sy...
ANALYSIS OF PARKING MANAGEMENT POLICY IN GARUT REGENCY
ANALYSIS OF PARKING MANAGEMENT POLICY IN GARUT REGENCY
Parking is an inseparable component or aspect of the need for a transportation system because every trip with a private vehicle generally always starts and ends in the parking lot....

Back to Top