Javascript must be enabled to continue!
Compressive properties of self-healing microcapsule-based cementitious composites subjected to freeze-thaw cycles using acoustic emission
View through CrossRef
Microcapsule self-healing technology is an effective scheme to improve the durability of cementitious composites. In this paper, the compressive properties of microcapsule-based self-healing cementitious composites after freeze-thaw cycles were studied using acoustic emission (AE), and the changes in AE characteristics, compressive strength, mass loss rate, and electric flux of microcapsule-based self-healing cementitious composites with different microcapsule contents and freeze-thaw cycles were studied. The results show that if the content of the microcapsule is appropriate, with the increase in the number of freeze-thaw cycles, the AE hits will generally increase first and then decrease, and the early AE events will also decrease. Because of the different contents of microcapsules, the improvement effect and defect effect change dynamically with the number of freeze-thaw cycles, which is also reflected in the dynamic process of compressive strength. After 100 freeze-thaw cycles, the compressive strength of self-healing cementitious composite samples with 5% content of microcapsules and 3% content of microcapsules is the highest. The changes in mass loss rate and electric flux are similar to the AE characteristic parameters, which further verifies the results of AE. The research results of this paper provide experimental data and experimental methods for the engineering application of microcapsule self-healing cement-based composites in cold areas.
Title: Compressive properties of self-healing microcapsule-based cementitious composites subjected to freeze-thaw cycles using acoustic emission
Description:
Microcapsule self-healing technology is an effective scheme to improve the durability of cementitious composites.
In this paper, the compressive properties of microcapsule-based self-healing cementitious composites after freeze-thaw cycles were studied using acoustic emission (AE), and the changes in AE characteristics, compressive strength, mass loss rate, and electric flux of microcapsule-based self-healing cementitious composites with different microcapsule contents and freeze-thaw cycles were studied.
The results show that if the content of the microcapsule is appropriate, with the increase in the number of freeze-thaw cycles, the AE hits will generally increase first and then decrease, and the early AE events will also decrease.
Because of the different contents of microcapsules, the improvement effect and defect effect change dynamically with the number of freeze-thaw cycles, which is also reflected in the dynamic process of compressive strength.
After 100 freeze-thaw cycles, the compressive strength of self-healing cementitious composite samples with 5% content of microcapsules and 3% content of microcapsules is the highest.
The changes in mass loss rate and electric flux are similar to the AE characteristic parameters, which further verifies the results of AE.
The research results of this paper provide experimental data and experimental methods for the engineering application of microcapsule self-healing cement-based composites in cold areas.
Related Results
The influence of freeze–thaw cycles on the mechanical properties of paleosols: based on a multiscale research
The influence of freeze–thaw cycles on the mechanical properties of paleosols: based on a multiscale research
To investigate the multiscale effects of freeze–thaw cycles on the mechanical properties and structural damage of paleosols, remodeled paleosol specimens at natural moisture conten...
Study on the freeze-thaw damage characteristics of skarn based on CT three-dimensional reconstruction
Study on the freeze-thaw damage characteristics of skarn based on CT three-dimensional reconstruction
To study the mesoscopic damage evolution characteristics of skarn under freeze-thaw cycles, based on CT technology, the skarn samples under freeze-thaw action were scanned by CT, a...
Study on the Mechanism of Fracturing and Permeability Enhancement of Coal Body under Liquid Nitrogen Freeze-Thaw Cycles
Study on the Mechanism of Fracturing and Permeability Enhancement of Coal Body under Liquid Nitrogen Freeze-Thaw Cycles
Abstract
To investigate the mechanical properties and fracture damage variations of deep coal and rock under liquid nitrogen freeze-thaw cycles, triaxial loading and seepag...
Study of the Mechanical and Microscopic Properties of Modified Silty Clay under Freeze-Thaw Cycles
Study of the Mechanical and Microscopic Properties of Modified Silty Clay under Freeze-Thaw Cycles
Silty clay can be found in the alpine region of the Qinghai province, China, where it is subject to annual freeze-thaw cycles. To investigate the static mechanical properties of si...
Risk assessment of antimony-arsenic contaminated soil remediated using zero-valent iron at different pH values combined with freeze-thaw cycles
Risk assessment of antimony-arsenic contaminated soil remediated using zero-valent iron at different pH values combined with freeze-thaw cycles
Abstract
Soil in mining wastelands is seriously polluted with heavy metals. Zero-valent iron (ZVI) is widely used for remediation of heavy metal-polluted soil because of it...
Numerical simulation research on the micro failure mechanism of sandstone under freeze-thaw cycles
Numerical simulation research on the micro failure mechanism of sandstone under freeze-thaw cycles
The process of micro crack formation in sandstone subjected to freeze-thaw cycles is pivotal for strip mine in cold regions. A discrete element numerical model considering the vari...
Performance of Self-Healing Cementitious Composites Using Aligned Tubular Healing Fiber
Performance of Self-Healing Cementitious Composites Using Aligned Tubular Healing Fiber
From the perspective of improving the self-healing method in construction, a tubular healing fiber was adopted as a container to improve the encapsulation capacity, which was avail...
Freeze–thaw actuator and applications
Freeze–thaw actuator and applications
Significant portions of the earth’s land mass undergo annual freeze–thaw cycles, and although water is abundant and practically a free resource, the possibility of using the water–...


