Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Porous organic polymers-based fluorescent chemosensors for Fe(III) ions-a functional mimic of siderophores

View through CrossRef
Extended organic polymers such as amorphous Covalent Organic Polymers (COPs) and crystalline Covalent Organic Frameworks (COFs) are emerging functional polymeric materials that have recently been shown promises as luminescent materials for chemosensing applications. A wide variety of luminescence COPs and COFs have been synthesized and successfully used as fluorescence-sensing materials for hazardous environmental pollutants and toxic contaminants. This review exemplifies various COPs and COFs-based fluorescence sensors for selective sensing of Fe(III) ions. The fluorescence sensors are sorted according to their structural features and each section provides a detailed discussion on the synthesis and fluorescence sensing ability of different COPs and COFs towards Fe(III) ions. Also, this review highlights the limitations of the existing organic polymer-based chemosensors and future perspectives on translating COPs and COFs-based fluorescence sensors for the practical detection of Fe(III) ions.
Title: Porous organic polymers-based fluorescent chemosensors for Fe(III) ions-a functional mimic of siderophores
Description:
Extended organic polymers such as amorphous Covalent Organic Polymers (COPs) and crystalline Covalent Organic Frameworks (COFs) are emerging functional polymeric materials that have recently been shown promises as luminescent materials for chemosensing applications.
A wide variety of luminescence COPs and COFs have been synthesized and successfully used as fluorescence-sensing materials for hazardous environmental pollutants and toxic contaminants.
This review exemplifies various COPs and COFs-based fluorescence sensors for selective sensing of Fe(III) ions.
The fluorescence sensors are sorted according to their structural features and each section provides a detailed discussion on the synthesis and fluorescence sensing ability of different COPs and COFs towards Fe(III) ions.
Also, this review highlights the limitations of the existing organic polymer-based chemosensors and future perspectives on translating COPs and COFs-based fluorescence sensors for the practical detection of Fe(III) ions.

Related Results

Barrier Polymers
Barrier Polymers
AbstractBarrier polymers are used for many packaging and protective applications. As barriers they separate a system, such as an article of food or an electronic component, from an...
Barrier Polymers
Barrier Polymers
AbstractBarrier polymers are used for many packaging and protective applications. As barriers they separate a system, such as an article of food or an electronic component, from an...
Perilaku Beton Porous Dengan Penambahan Zat Aditif Superplastizer (Sika Viscocrete)
Perilaku Beton Porous Dengan Penambahan Zat Aditif Superplastizer (Sika Viscocrete)
ABSTRACT According to ACI 522R-10, Larvious Concrete, or Pervious Concrete is defined as concrete that has a slump value almost close to zero, which is formed from Portland cement,...
Sulfur‐Containing Polymers
Sulfur‐Containing Polymers
AbstractThis review describes methods of synthesis and some more interesting properties of the various new sulfur‐containing polymers, with particular regard for their potential ap...
Sulfur‐Containing Polymers
Sulfur‐Containing Polymers
AbstractThis review describes methods of synthesis and some more interesting properties of the various new sulfur‐containing polymers, with particular regard for their potential ap...
Marine fishes exhibit exceptional variation in biofluorescent emission spectra
Marine fishes exhibit exceptional variation in biofluorescent emission spectra
AbstractBiofluorescence is a phylogenetically widespread phenomenon among marine fishes, yet the phenotypic diversity in fluorescent emission wavelengths (e.g., green, red) remains...
Sorption Behaviors of Light Lanthanides(III) (La(III), Ce(III), Pr(III), Nd(III)) and Cr(III) Using Nitrolite
Sorption Behaviors of Light Lanthanides(III) (La(III), Ce(III), Pr(III), Nd(III)) and Cr(III) Using Nitrolite
The sorption of light lanthanides(III) (La(III), Ce(III), Pr(III), Nd(III)) and chromium(III) ions from acidic solutions on Nitrolite was studied at varying ions concentrations, pH...
Microbial Activity in the Rhizosphere in Relation to the Iron Nutrition of Plants
Microbial Activity in the Rhizosphere in Relation to the Iron Nutrition of Plants
Iron is the fourth most abundant element in the soil, but since it forms insoluble hydroxides at neutral and basic pH, it often falls short of meeting the basic requirements of pla...

Back to Top