Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Electro-Oxidation of Ammonia at Novel Ag2O−PrO2/γ-Al2O3 Catalysts

View through CrossRef
An Ag2O(x)−PrO2(y)/γ-Al2O3 electrocatalyst series (X:Y is for Ag:Pr from 0 to 10) was synthesized, to use synthesized samples in electrochemical applications, a step in fuel cells advancements. Ag2O(x)−PrO2(y)/γ-Al2O3/Glassy-Carbon was investigated for electrochemical oxidation of ammonia in alkaline medium and proved to be highly effective, having high potential utility, as compared to commonly used Pt-based electrocatalysts. In this study, gamma alumina as catalytic support was synthesized via precipitation method, and stoichiometric wt/wt.% compositions of Ag2O−PrO2 were loaded on γ-Al2O3 by co-impregnation method. The desired phase of γ-Al2O3 and supported nanocatalysts was obtained after heat treatment at 800 and 600 °C, respectively. The successful loadings of Ag2O−PrO2 nanocatalysts on surface of γ-Al2O3 was determined by X-rays diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR), and energy dispersive analysis (EDX). The nano-sized domain of the sample powders sustained with particle sizes was calculated via XRD and scanning electron microscopy (SEM). The surface morphology and elemental compositions were examined by SEM, transmission electron microscopy (TEM) and EDX. The conductive and electron-transferring nature was investigated by cyclic voltammetry and electrochemical impedance (EIS). Cyclic voltammetric profiles were observed, and respective kinetic and thermodynamic parameters were calculated, which showed that these synthesized materials are potential catalysts for ammonia electro-oxidation. Ag2O(6)−PrO2(4)/γ-Al2O3 proved to be the most proficient catalyst among all the members of the series, having greater diffusion coefficient, heterogeneous rate constant and lesser Gibbs free energy for this system. The catalytic activity of these electrocatalysts is revealed from electrochemical studies which reflected their potentiality as electrode material in direct ammonia fuel cell technology for energy production.
Title: Electro-Oxidation of Ammonia at Novel Ag2O−PrO2/γ-Al2O3 Catalysts
Description:
An Ag2O(x)−PrO2(y)/γ-Al2O3 electrocatalyst series (X:Y is for Ag:Pr from 0 to 10) was synthesized, to use synthesized samples in electrochemical applications, a step in fuel cells advancements.
Ag2O(x)−PrO2(y)/γ-Al2O3/Glassy-Carbon was investigated for electrochemical oxidation of ammonia in alkaline medium and proved to be highly effective, having high potential utility, as compared to commonly used Pt-based electrocatalysts.
In this study, gamma alumina as catalytic support was synthesized via precipitation method, and stoichiometric wt/wt.
% compositions of Ag2O−PrO2 were loaded on γ-Al2O3 by co-impregnation method.
The desired phase of γ-Al2O3 and supported nanocatalysts was obtained after heat treatment at 800 and 600 °C, respectively.
The successful loadings of Ag2O−PrO2 nanocatalysts on surface of γ-Al2O3 was determined by X-rays diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR), and energy dispersive analysis (EDX).
The nano-sized domain of the sample powders sustained with particle sizes was calculated via XRD and scanning electron microscopy (SEM).
The surface morphology and elemental compositions were examined by SEM, transmission electron microscopy (TEM) and EDX.
The conductive and electron-transferring nature was investigated by cyclic voltammetry and electrochemical impedance (EIS).
Cyclic voltammetric profiles were observed, and respective kinetic and thermodynamic parameters were calculated, which showed that these synthesized materials are potential catalysts for ammonia electro-oxidation.
Ag2O(6)−PrO2(4)/γ-Al2O3 proved to be the most proficient catalyst among all the members of the series, having greater diffusion coefficient, heterogeneous rate constant and lesser Gibbs free energy for this system.
The catalytic activity of these electrocatalysts is revealed from electrochemical studies which reflected their potentiality as electrode material in direct ammonia fuel cell technology for energy production.

Related Results

Influence of silver nanoparticles on nitrification kinetics and ammonla oxidation in activated sludge
Influence of silver nanoparticles on nitrification kinetics and ammonla oxidation in activated sludge
Nitrification is widely applied process for biological removal of nitrogen from wastewaters. The process comprises of two-steps: ammonia oxidation and nitrite oxidation. Ammonia (N...
Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers
Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers
Ammonia oxidizers (family Nitrobacteraceae) and methanotrophs (family Methylococcaceae) oxidize CO and CH4 to CO2 and NH4+ to NO2-. However, the relative contributions of the two g...
Catalytic oxidation of organic pollutants
Catalytic oxidation of organic pollutants
Catalytic oxidation of organic pollutants The paper presents the results of the measurements of the catalytic activity of V2O5/TiO2 and MoO3/TiO2 catalysts (8,10,12 ...
Research on the Approach and Challenges of Green Ammonia as Hydrogen Carrier
Research on the Approach and Challenges of Green Ammonia as Hydrogen Carrier
Abstract The difficulties in hydrogen storage and transportation have become the main bottleneck that restricts the large-scale development of the hydrogen energy in...
Catalytic oxidation removal of gaseous elemental mercury in flue gas over niobium‐loaded catalyst
Catalytic oxidation removal of gaseous elemental mercury in flue gas over niobium‐loaded catalyst
Nb‐Co‐Ce/Al2O3 catalysts prepared by impregnation, sol‐gel method, and co‐precipitation were examined for elemental mercury (Hg0) oxidation in a simulated coal combustion flue gas....
Effects of Phosphorus Addition on the Hydrophobicity and Catalytic Performance in Methane Combustion of θ-Al2O3 Supported Pd Catalysts
Effects of Phosphorus Addition on the Hydrophobicity and Catalytic Performance in Methane Combustion of θ-Al2O3 Supported Pd Catalysts
A series of xPθ-Al2O3 supports modified with different amounts of phosphorus element were prepared and taken as supports of palladium catalysts for methane catalytic combustion. Th...

Back to Top