Javascript must be enabled to continue!
Extreme cold events in Europe under a reduced AMOC
View through CrossRef
There is a consensus that a weakened Atlantic Meridional Overturning Circulation (AMOC) decreases mean surface temperature in the Northern Hemisphere, both over the ocean and the continents. However, the impacts of a reduced AMOC on cold extreme events have not yet been examined. We analyse the impacts of a reduced AMOC strength on extreme cold events over Europe using targeted sensitivity experiments with the EC-Earth3 climate model. Starting from a fully coupled ocean-atmosphere simulation in which the AMOC was artificially reduced, a set of atmosphere-only integrations with prescribed sea surface temperature and sea-ice cover was conducted to evaluate the effects of weakly and strongly reduced AMOC strength. Despite overall cooling, reduced AMOC leads to fewer winter cold spells in Europe. We find that the weakened AMOC intensifies near-surface meridional gradient temperature in the North Atlantic and Europe, thus providing the energy to boost the jet stream. A stronger jet stream leads to less atmospheric blocking, reducing the frequency of cold spells over Europe. Although limited to the output of one model, our results indicate that a reduced AMOC strength may play a role in shaping future climate change cold spells by modulating the strength of the jet stream and the frequency of atmospheric blocking.
Title: Extreme cold events in Europe under a reduced AMOC
Description:
There is a consensus that a weakened Atlantic Meridional Overturning Circulation (AMOC) decreases mean surface temperature in the Northern Hemisphere, both over the ocean and the continents.
However, the impacts of a reduced AMOC on cold extreme events have not yet been examined.
We analyse the impacts of a reduced AMOC strength on extreme cold events over Europe using targeted sensitivity experiments with the EC-Earth3 climate model.
Starting from a fully coupled ocean-atmosphere simulation in which the AMOC was artificially reduced, a set of atmosphere-only integrations with prescribed sea surface temperature and sea-ice cover was conducted to evaluate the effects of weakly and strongly reduced AMOC strength.
Despite overall cooling, reduced AMOC leads to fewer winter cold spells in Europe.
We find that the weakened AMOC intensifies near-surface meridional gradient temperature in the North Atlantic and Europe, thus providing the energy to boost the jet stream.
A stronger jet stream leads to less atmospheric blocking, reducing the frequency of cold spells over Europe.
Although limited to the output of one model, our results indicate that a reduced AMOC strength may play a role in shaping future climate change cold spells by modulating the strength of the jet stream and the frequency of atmospheric blocking.
Related Results
Extreme temperature events in Europe under a reduced AMOC
Extreme temperature events in Europe under a reduced AMOC
The Atlantic Meridional Overturning Circulation (AMOC) is projected to weaken by the end of this century across all future scenarios considered by the IPCC Sixth Assessment Report....
The impact of AMOC weakening on the global monsoon in EC-Earth3 water hosing simulations
The impact of AMOC weakening on the global monsoon in EC-Earth3 water hosing simulations
Changes in Atlantic Meridional Overturning Circulation (AMOC) affect tropical precipitation through the coupling with the Hadley Circulation and cross-equatorial atmospheric heat t...
Impacts and reversibility of meltwater-induced future Atlantic Meridional Overturning Circulation changes
Impacts and reversibility of meltwater-induced future Atlantic Meridional Overturning Circulation changes
The Atlantic Meridional Overturning Circulation (AMOC) is projected to weaken in the future due to increasing greenhouse gas concentrations, but it is still debated whether anthrop...
Model Biases in the AMOC Stability Indicator
Model Biases in the AMOC Stability Indicator
The Atlantic Meridional Overturning Circulation (AMOC) is considered to be a multi-stable system with a northward overturning and a southward overturning circulation state...
How does aerosol forcing drive a strengthening of the AMOC in CMIP6 historical simulations?
How does aerosol forcing drive a strengthening of the AMOC in CMIP6 historical simulations?
<p>Previous work has shown that anthropogenic aerosol emissions drive a strengthening in the Atlantic Meridional Overturning Circulation (AMOC) in CMIP6 historical si...
AMOC weakening and its association with increased dynamic sea level in recent decades 
AMOC weakening and its association with increased dynamic sea level in recent decades 
The Atlantic Meridional Overturning Circulation (AMOC) is a crucial mechanism of poleward heat transport in the ocean and climate system. It modulates the redistribution of heat an...
What Causes the AMOC to Weaken in CMIP5?
What Causes the AMOC to Weaken in CMIP5?
AbstractIn a transient warming scenario, the North Atlantic is influenced by a complex pattern of surface buoyancy flux changes that ultimately weaken the Atlantic meridional overt...
AMOC Early-Warning Signals in CMIP6
AMOC Early-Warning Signals in CMIP6
<p>The Atlantic Meridional Overturning Circulation (AMOC) is a vital part of the global climate that has been suggested to exhibit bi-stability. A collapse from its c...

