Javascript must be enabled to continue!
Hydraulic redistribution affects modeled carbon cycling via soil microbial activity and suppressed fire
View through CrossRef
AbstractHydraulic redistribution (HR) of water from moist to drier soils, through plant roots, occurs world‐wide in seasonally dry ecosystems. Although the influence of HR on landscape hydrology and plant water use has been amply demonstrated, HR's effects on microbe‐controlled processes sensitive to soil moisture, including carbon and nutrient cycling at ecosystem scales, remain difficult to observe in the field and have not been integrated into a predictive framework. We incorporated a representation of HR into the Community Land Model (CLM4.5) and found the new model improved predictions of water, energy, and system‐scale carbon fluxes observed by eddy covariance at four seasonally dry yet ecologically diverse temperate and tropical AmeriFlux sites. Modeled plant productivity and microbial activities were differentially stimulated by upward HR, resulting at times in increased plant demand outstripping increased nutrient supply. Modeled plant productivity and microbial activities were diminished by downward HR. Overall, inclusion of HR tended to increase modeled annual ecosystem uptake of CO2 (or reduce annual CO2 release to the atmosphere). Moreover, engagement of CLM4.5′s ground‐truthed fire module indicated that though HR increased modeled fuel load at all four sites, upward HR also moistened surface soil and hydrated vegetation sufficiently to limit the modeled spread of dry season fire and concomitant very large CO2 emissions to the atmosphere. Historically, fire has been a dominant ecological force in many seasonally dry ecosystems, and intensification of soil drought and altered precipitation regimes are expected for seasonally dry ecosystems in the future. HR may play an increasingly important role mitigating development of extreme soil water potential gradients and associated limitations on plant and soil microbial activities, and may inhibit the spread of fire in seasonally dry ecosystems.
Title: Hydraulic redistribution affects modeled carbon cycling via soil microbial activity and suppressed fire
Description:
AbstractHydraulic redistribution (HR) of water from moist to drier soils, through plant roots, occurs world‐wide in seasonally dry ecosystems.
Although the influence of HR on landscape hydrology and plant water use has been amply demonstrated, HR's effects on microbe‐controlled processes sensitive to soil moisture, including carbon and nutrient cycling at ecosystem scales, remain difficult to observe in the field and have not been integrated into a predictive framework.
We incorporated a representation of HR into the Community Land Model (CLM4.
5) and found the new model improved predictions of water, energy, and system‐scale carbon fluxes observed by eddy covariance at four seasonally dry yet ecologically diverse temperate and tropical AmeriFlux sites.
Modeled plant productivity and microbial activities were differentially stimulated by upward HR, resulting at times in increased plant demand outstripping increased nutrient supply.
Modeled plant productivity and microbial activities were diminished by downward HR.
Overall, inclusion of HR tended to increase modeled annual ecosystem uptake of CO2 (or reduce annual CO2 release to the atmosphere).
Moreover, engagement of CLM4.
5′s ground‐truthed fire module indicated that though HR increased modeled fuel load at all four sites, upward HR also moistened surface soil and hydrated vegetation sufficiently to limit the modeled spread of dry season fire and concomitant very large CO2 emissions to the atmosphere.
Historically, fire has been a dominant ecological force in many seasonally dry ecosystems, and intensification of soil drought and altered precipitation regimes are expected for seasonally dry ecosystems in the future.
HR may play an increasingly important role mitigating development of extreme soil water potential gradients and associated limitations on plant and soil microbial activities, and may inhibit the spread of fire in seasonally dry ecosystems.
Related Results
Research on Underground Drip Irrigation and Soil Redistribution - Take Heshan District of Yiyang City as an Example
Research on Underground Drip Irrigation and Soil Redistribution - Take Heshan District of Yiyang City as an Example
Abstract: The drip flow and the buried depth of drip irrigation zone are not only important parameters of subsurface irrigation design and operation management, but also important ...
Indirect influence of soil enzymes and their stoichiometry on soil organic carbon response to warming and nitrogen deposition in the Tibetan Plateau alpine meadow
Indirect influence of soil enzymes and their stoichiometry on soil organic carbon response to warming and nitrogen deposition in the Tibetan Plateau alpine meadow
Despite extensive research on the impact of warming and nitrogen deposition on soil organic carbon components, the response mechanisms of microbial community composition and enzyme...
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract
The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...
VOLUMETRIC RIGIDITY OF HYDRAULIC SYSTEMS
VOLUMETRIC RIGIDITY OF HYDRAULIC SYSTEMS
A hydraulic drive is a set of interacting hydraulic devices that is designed to be ghosted by means of a working fluid under pressure. The main element in hydraulic drives most mac...
STRUKTUR KOMUNITAS MIKROBA TANAH DAN IMPLIKASINYA DALAM MEWUJUDKAN SISTEM PERTANIAN BERKELANJUTAN
STRUKTUR KOMUNITAS MIKROBA TANAH DAN IMPLIKASINYA DALAM MEWUJUDKAN SISTEM PERTANIAN BERKELANJUTAN
Soils are made up of organic and an organic material. The organic soil component contains all the living creatures in the soil and the dead ones in various stages of decomposition....
Extracellular Enzyme Stoichiometry Reveals Soil Microbial Carbon and Phosphorus Limitations in the Yimeng Mountain Area, China
Extracellular Enzyme Stoichiometry Reveals Soil Microbial Carbon and Phosphorus Limitations in the Yimeng Mountain Area, China
Soil extracellular enzymes are considered key components in ecosystem carbon and nutrient cycling, and analysing their stoichiometry is an effective way to reveal the resource limi...
Soil microbial relative resource limitation exhibited contrasting seasonal patterns along an elevational gradient in Yulong Snow Mountain
Soil microbial relative resource limitation exhibited contrasting seasonal patterns along an elevational gradient in Yulong Snow Mountain
Abstract
Microbial relative resource limitations represented by enzyme stoichiometry reflect the relationship between microbial nutrient requirements and nutrient status in soil,...
Ecosystem scale evapotranspiration is controlled by small scale processes and soil hydraulic properties
Ecosystem scale evapotranspiration is controlled by small scale processes and soil hydraulic properties
The upscaling of hydrologic processes at catchment scale from small scale soil hydraulic parameterization has been met with limited success. For example, spatially variable attribu...

