Javascript must be enabled to continue!
Cross-species and tissue imputation of species-level DNA methylation samples across mammalian species
View through CrossRef
AbstractDNA methylation data offers valuable insights into various aspects of mammalian biology. The recent introduction and large-scale application of the mammalian methylation array has significantly expanded the availability of such data across conserved sites in many mammalian species. In our study, we consider 13,245 samples profiled on this array encompassing 348 species and 59 tissues from 746 species-tissue combinations. While having some coverage of many different species and tissue types, this data captures only 3.6% of potential species-tissue combinations. To address this gap, we developed CMImpute (Cross-species Methylation Imputation), a method based on a Conditional Variational Autoencoder, to impute DNA methylation for non-profiled species-tissue combinations. In cross-validation, we demonstrate that CMImpute achieves a strong correlation with actual observed values, surpassing several baseline methods. Using CMImpute we imputed methylation data for 19,786 new species-tissue combinations. We believe that both CMImpute and our imputed data resource will be useful for DNA methylation analyses across a wide range of mammalian species.
Title: Cross-species and tissue imputation of species-level DNA methylation samples across mammalian species
Description:
AbstractDNA methylation data offers valuable insights into various aspects of mammalian biology.
The recent introduction and large-scale application of the mammalian methylation array has significantly expanded the availability of such data across conserved sites in many mammalian species.
In our study, we consider 13,245 samples profiled on this array encompassing 348 species and 59 tissues from 746 species-tissue combinations.
While having some coverage of many different species and tissue types, this data captures only 3.
6% of potential species-tissue combinations.
To address this gap, we developed CMImpute (Cross-species Methylation Imputation), a method based on a Conditional Variational Autoencoder, to impute DNA methylation for non-profiled species-tissue combinations.
In cross-validation, we demonstrate that CMImpute achieves a strong correlation with actual observed values, surpassing several baseline methods.
Using CMImpute we imputed methylation data for 19,786 new species-tissue combinations.
We believe that both CMImpute and our imputed data resource will be useful for DNA methylation analyses across a wide range of mammalian species.
Related Results
Echinococcus granulosus in Environmental Samples: A Cross-Sectional Molecular Study
Echinococcus granulosus in Environmental Samples: A Cross-Sectional Molecular Study
Abstract
Introduction
Echinococcosis, caused by tapeworms of the Echinococcus genus, remains a significant zoonotic disease globally. The disease is particularly prevalent in areas...
Abstract 2094: Correaltions between genome-wide DNA methylation profiles and genomic driver aberrations during multistage lung adenocaricinogenesis
Abstract 2094: Correaltions between genome-wide DNA methylation profiles and genomic driver aberrations during multistage lung adenocaricinogenesis
Abstract
The aim of this study was to clarify correlations between epigenomic and genomic alterations during multistage lung adenocarcinogenesis. Single-CpG resoluti...
Genome wide hypomethylation and youth-associated DNA gap reduction promoting DNA damage and senescence-associated pathogenesis
Genome wide hypomethylation and youth-associated DNA gap reduction promoting DNA damage and senescence-associated pathogenesis
Abstract
Background: Age-associated epigenetic alteration is the underlying cause of DNA damage in aging cells. Two types of youth-associated DNA-protection epigenetic mark...
Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation
Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation
Abstract
Background
DNA methylation is an important type of epigenetic modification involved in gene regulation. Although strong DNA...
CMImpute: cross-species and tissue imputation of species-level DNA methylation samples across mammalian species
CMImpute: cross-species and tissue imputation of species-level DNA methylation samples across mammalian species
Abstract
The large-scale application of the mammalian methylation array has substantially expanded the availability of DNA methylation data in mammalian species. However...
Comparative Promoter Methylation Analysis of p53 Target Genes in Urogenital Cancers
Comparative Promoter Methylation Analysis of p53 Target Genes in Urogenital Cancers
<i>Introduction:</i> The methylation status of selected new p53 target genes in bladder, kidney and testicular cancer was investigated to find similarities in methylati...
Correcting Methylation Calls in Clinically Relevant Low-Mappability Regions
Correcting Methylation Calls in Clinically Relevant Low-Mappability Regions
AbstractDNA methylation is an important component in vital biological functions such as embryonic development, carcinogenesis, and heritable regulation. Accurate methods to assess ...
Global DNA methylation and gene expression analysis in pre-B cell acute lymphoblastic leukemia
Global DNA methylation and gene expression analysis in pre-B cell acute lymphoblastic leukemia
Acute lymphoblastic leukemia (ALL) is a hematological cancer associated with precursor B-cells and is the most common cancer diagnosed in children under the age of 15. Our complete...

