Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Concept design, analysis, and Integration of the new U.P.C. multispectral lidar system

View through CrossRef
The increasing need for range-resolved aerosol and water-vapour atmospheric observation networks worldwide has given rise to multi-spectral LIDARs (Light Detection and Ranging, a synonym of laser radar) as advanced remote sensing sensors. This Ph.D. presents the design, integration and analysis of the new 6-channel multispectral elastic/Raman LIDAR for aerosol and water-vapour content monitoring developed at the Remote Sensing Lab. (RSLAB) of the Universitat Polit ecnica de Catalunya (UPC). It is well known that the combination of at least three elastic and two Raman nitrogen channels are su cient to enable retrieval of the optical and microphysical properties of aerosols with a key impact on climate change variables. The UPC lidar is part of the EARLINET (European Aerosol Research Lidar Network) -GALION (Global Atmospheric Watch Atmospheric Lidar Observation Network), a ground-based continental network including more than 28 stations. Currently, only 8 of the 28 EARLINET stations are of such advanced type. This Ph.D. speci cally focuses on: (1) Concept link-budget instrument design and overlap factor assessment. The former includes opto-atmospheric parameter modelling and assessment of backscattered power and SNR levels, and maximum system range for the di erent reception channels (3 elastic, and 2 aerosol and 1 water-vapour Raman channels, ultraviolet to near-infrared bands). The latter studies the laser-telescope crossover function (or overlap function) by means of a novel raytracing Gaussian model. The problem of overlap function computation and its near-range sensitivity for medium size aperture (f=10, f=11) bi-axial tropospheric lidar systems using both detector and ber-optics coupling alternatives at the telescope focal-plane is analysed using this new ray-tracing approach, which provides a much simpler solution than analyticalbased methods. Sensitivity to laser divergence, eld-lens and detector/ ber positions, and ber's numerical aperture is considered. (2) Design and opto-mechanical implementation of the 6-channel polychromator (i.e., the spectrally selective unit in reception). Design trade-o s concerning light collimation, end-to-end transmissivity, net channel responsivity, and homogeneous spatial light distribution onto the detectors' active area discussed. (3) System integration and validation. This third part is two fold: On one hand, fi rst-order backscatter-coe cient error bounds (a level-1 data product) for the two-component elastic lidar inversion algorithm are estimated for both random (observation noise) and systematic error sources (user's uncertainty in the backscatter-coe cient calibration, and user's uncertainty in the aerosol extinction-to-backscatter lidar ratio). On the other hand, the multispectral lidar so far integrated is described at both hardware and control software level. Statistical validation results for the new UPC lidar (today in routine operation) in the framework of SPALI-2010 intercomparison campaign are presented as part of EARLINET quality assurance / optimisation of instruments' program. The methodology developed in the rst part of this Ph.D. has successfully been applied to the speci cation case study of the IFAE/UAB lidar system, which will be installed and operated at the Cherenkov Telescope Array (CTA) observatory. Finally, specs for automated unmanned unattended lidar operation with service times close to 365/24 are presented at the end of this Ph.D. in response to the increasing demand for larger observation times and availability periods of lidar stations.
Universitat Politècnica de Catalunya
Title: Concept design, analysis, and Integration of the new U.P.C. multispectral lidar system
Description:
The increasing need for range-resolved aerosol and water-vapour atmospheric observation networks worldwide has given rise to multi-spectral LIDARs (Light Detection and Ranging, a synonym of laser radar) as advanced remote sensing sensors.
This Ph.
D.
presents the design, integration and analysis of the new 6-channel multispectral elastic/Raman LIDAR for aerosol and water-vapour content monitoring developed at the Remote Sensing Lab.
(RSLAB) of the Universitat Polit ecnica de Catalunya (UPC).
It is well known that the combination of at least three elastic and two Raman nitrogen channels are su cient to enable retrieval of the optical and microphysical properties of aerosols with a key impact on climate change variables.
The UPC lidar is part of the EARLINET (European Aerosol Research Lidar Network) -GALION (Global Atmospheric Watch Atmospheric Lidar Observation Network), a ground-based continental network including more than 28 stations.
Currently, only 8 of the 28 EARLINET stations are of such advanced type.
This Ph.
D.
speci cally focuses on: (1) Concept link-budget instrument design and overlap factor assessment.
The former includes opto-atmospheric parameter modelling and assessment of backscattered power and SNR levels, and maximum system range for the di erent reception channels (3 elastic, and 2 aerosol and 1 water-vapour Raman channels, ultraviolet to near-infrared bands).
The latter studies the laser-telescope crossover function (or overlap function) by means of a novel raytracing Gaussian model.
The problem of overlap function computation and its near-range sensitivity for medium size aperture (f=10, f=11) bi-axial tropospheric lidar systems using both detector and ber-optics coupling alternatives at the telescope focal-plane is analysed using this new ray-tracing approach, which provides a much simpler solution than analyticalbased methods.
Sensitivity to laser divergence, eld-lens and detector/ ber positions, and ber's numerical aperture is considered.
(2) Design and opto-mechanical implementation of the 6-channel polychromator (i.
e.
, the spectrally selective unit in reception).
Design trade-o s concerning light collimation, end-to-end transmissivity, net channel responsivity, and homogeneous spatial light distribution onto the detectors' active area discussed.
(3) System integration and validation.
This third part is two fold: On one hand, fi rst-order backscatter-coe cient error bounds (a level-1 data product) for the two-component elastic lidar inversion algorithm are estimated for both random (observation noise) and systematic error sources (user's uncertainty in the backscatter-coe cient calibration, and user's uncertainty in the aerosol extinction-to-backscatter lidar ratio).
On the other hand, the multispectral lidar so far integrated is described at both hardware and control software level.
Statistical validation results for the new UPC lidar (today in routine operation) in the framework of SPALI-2010 intercomparison campaign are presented as part of EARLINET quality assurance / optimisation of instruments' program.
The methodology developed in the rst part of this Ph.
D.
has successfully been applied to the speci cation case study of the IFAE/UAB lidar system, which will be installed and operated at the Cherenkov Telescope Array (CTA) observatory.
Finally, specs for automated unmanned unattended lidar operation with service times close to 365/24 are presented at the end of this Ph.
D.
in response to the increasing demand for larger observation times and availability periods of lidar stations.

Related Results

Development of a multimodal imaging system based on LIDAR
Development of a multimodal imaging system based on LIDAR
(English) Perception of the environment is an essential requirement for the fields of autonomous vehicles and robotics, that claim for high amounts of data to make reliable decisio...
Airborne LiDAR for DEM generation: some critical issues
Airborne LiDAR for DEM generation: some critical issues
Airborne LiDAR is one of the most effective and reliable means of terrain data collection. Using LiDAR data for digital elevation model (DEM) generation is becoming a standard prac...
Design
Design
Conventional definitions of design rarely capture its reach into our everyday lives. The Design Council, for example, estimates that more than 2.5 million people use design-related...
Innovative approach for automatic land cover information extraction from LiDAR data
Innovative approach for automatic land cover information extraction from LiDAR data
An airborne laser scanning (ALS) system with LiDAR (Light Detection and Ranging) technology is a highly precise and accurate 3D point data acquisition technique. LiDAR technology ...
Innovative approach for automatic land cover information extraction from LiDAR data
Innovative approach for automatic land cover information extraction from LiDAR data
An airborne laser scanning (ALS) system with LiDAR (Light Detection and Ranging) technology is a highly precise and accurate 3D point data acquisition technique. LiDAR technology ...
Road Ditch Line Mapping with Mobile LiDAR
Road Ditch Line Mapping with Mobile LiDAR
Maintenance of roadside ditches is important to avoid localized flooding and premature failure of pavements. Scheduling effective preventative maintenance requires mapping of the d...
Applications of LiDAR in Agriculture and Future Research Directions
Applications of LiDAR in Agriculture and Future Research Directions
Light detection and ranging (LiDAR) sensors have accrued an ever-increasing presence in the agricultural sector due to their non-destructive mode of capturing data. LiDAR sensors e...

Back to Top