Javascript must be enabled to continue!
Construction and Molecular Characterization Of a T-Cell Receptor-Like Antibody and CAR-T Cells Specific For Minor Histocompatibility Antigen HA-1H
View through CrossRef
Selective graft-versus-tumor (GVT) reactivity with minimal risk of graft-versus-host disease (GVHD) following allogeneic stem cell transplantation is thought to be induced by targeting minor histocompatibility (H) antigens (Ags) expressed only on patients’ hematopoietic cells. Among HLA-A* 02:01 positive patients, minor H Ags such as HA-1 and HA-2 have been shown to be associated with anti-tumor responses with minimal GVHD and explored for application to adoptive immunotherapy. Because preparation of Ag-specific cytotoxic T cell clones (CTLs) or lines for adoptive immunotherapy is labor-intensive and time consuming, the genetic transfer of T-cell receptors (TCRs) directed toward target Ags into T lymphocytes has been used to efficiently generate anti-tumor T cells without the need for in vitro induction and expansion. Alternatively, T cells could be gene-modified with a chimeric antigen receptor (CAR) harnessing a single chain antibody moiety (scFv). The conventional CAR strategy has the limitation of only targeting cell surface Ags on target cells. One possible way to attain intracellular Ag targeting with a CAR is to generate a TCR-like monoclonal antibody (mAb) as a source of scFv.
In this study, we sought to generate highly specific mAbs specific for HA-1H minor H Ag by immunizing mice with tetramerized recombinant HLA-A2 incorporating HA-1H minor H Ag peptides and β2-microglobulin (HA-1H/HLA-A2). We hypothesized that the use of HLA-A2 transgenic mice, which should be tolerant to human HLA-A2, would facilitate efficient induction of mAbs specific for peptides presented on HLA-A2. Phage libraries were generated from splenic B cells and screened by panning for clones reactive to plate-bound HA-1H/HLA-A2 in the presence of free MAGEA4/HLA-A2 for competition. Candidate scFv encoded by obtained phage clones were transformed to scFv tetrameric Ab form or introduced into T cells as CAR coupled to CD28 transmembrane and CD3ζ domains (CD28-ζ).
A total of 144 clones were randomly selected from 8.1×108 clones that had been recovered after the third panning. Among 144 clones, 18 (12.5%) showed preferential binding to HA-1/HLA-A2, 137 showed similar binding to both pMHC complexes, and 7 showed reactivity to neither of them. One of 18 scFv Abs, clone #131, demonstrated high affinity (KD = 8.34nM) for the HA-1H/HLA-A2 complex. Primary human CD8 T cells transduced with #131 scFv-CD28-ζ were stained with HA-1H/HLA-A2 tetramers as strongly as a CTL clone, EH6, specific for endogenously HLA-A2- and HA-1H-positive cells. Unexpectedly, however, #131 scFv-CD28-ζ CAR-T cells required ∼100-fold higher Ag density when pulsed exogenously to exert cytotoxicity than did the cognate EH6-CTL. In addition, mAb blocking experiments demonstrated that #131 scFv-CD28-ζCAR-T cells were less sensitive to CD8 blockade when they were completely blocked with HA-1H/HLA-A2 tetramer. These data suggest that T cells with higher affinity antigen receptors than TCRs (average KD ranging between 1μM∼100μM) are less able to recognize low density peptide/MHC antigens as reported in the case of affinity-matured TCR or CAR, and that CD8+ CAR-T cells may not be necessarily CD8-dependent possibly due to failure to form complexes with CD3.
Disclosures:
No relevant conflicts of interest to declare.
American Society of Hematology
Title: Construction and Molecular Characterization Of a T-Cell Receptor-Like Antibody and CAR-T Cells Specific For Minor Histocompatibility Antigen HA-1H
Description:
Selective graft-versus-tumor (GVT) reactivity with minimal risk of graft-versus-host disease (GVHD) following allogeneic stem cell transplantation is thought to be induced by targeting minor histocompatibility (H) antigens (Ags) expressed only on patients’ hematopoietic cells.
Among HLA-A* 02:01 positive patients, minor H Ags such as HA-1 and HA-2 have been shown to be associated with anti-tumor responses with minimal GVHD and explored for application to adoptive immunotherapy.
Because preparation of Ag-specific cytotoxic T cell clones (CTLs) or lines for adoptive immunotherapy is labor-intensive and time consuming, the genetic transfer of T-cell receptors (TCRs) directed toward target Ags into T lymphocytes has been used to efficiently generate anti-tumor T cells without the need for in vitro induction and expansion.
Alternatively, T cells could be gene-modified with a chimeric antigen receptor (CAR) harnessing a single chain antibody moiety (scFv).
The conventional CAR strategy has the limitation of only targeting cell surface Ags on target cells.
One possible way to attain intracellular Ag targeting with a CAR is to generate a TCR-like monoclonal antibody (mAb) as a source of scFv.
In this study, we sought to generate highly specific mAbs specific for HA-1H minor H Ag by immunizing mice with tetramerized recombinant HLA-A2 incorporating HA-1H minor H Ag peptides and β2-microglobulin (HA-1H/HLA-A2).
We hypothesized that the use of HLA-A2 transgenic mice, which should be tolerant to human HLA-A2, would facilitate efficient induction of mAbs specific for peptides presented on HLA-A2.
Phage libraries were generated from splenic B cells and screened by panning for clones reactive to plate-bound HA-1H/HLA-A2 in the presence of free MAGEA4/HLA-A2 for competition.
Candidate scFv encoded by obtained phage clones were transformed to scFv tetrameric Ab form or introduced into T cells as CAR coupled to CD28 transmembrane and CD3ζ domains (CD28-ζ).
A total of 144 clones were randomly selected from 8.
1×108 clones that had been recovered after the third panning.
Among 144 clones, 18 (12.
5%) showed preferential binding to HA-1/HLA-A2, 137 showed similar binding to both pMHC complexes, and 7 showed reactivity to neither of them.
One of 18 scFv Abs, clone #131, demonstrated high affinity (KD = 8.
34nM) for the HA-1H/HLA-A2 complex.
Primary human CD8 T cells transduced with #131 scFv-CD28-ζ were stained with HA-1H/HLA-A2 tetramers as strongly as a CTL clone, EH6, specific for endogenously HLA-A2- and HA-1H-positive cells.
Unexpectedly, however, #131 scFv-CD28-ζ CAR-T cells required ∼100-fold higher Ag density when pulsed exogenously to exert cytotoxicity than did the cognate EH6-CTL.
In addition, mAb blocking experiments demonstrated that #131 scFv-CD28-ζCAR-T cells were less sensitive to CD8 blockade when they were completely blocked with HA-1H/HLA-A2 tetramer.
These data suggest that T cells with higher affinity antigen receptors than TCRs (average KD ranging between 1μM∼100μM) are less able to recognize low density peptide/MHC antigens as reported in the case of affinity-matured TCR or CAR, and that CD8+ CAR-T cells may not be necessarily CD8-dependent possibly due to failure to form complexes with CD3.
Disclosures:
No relevant conflicts of interest to declare.
Related Results
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...
Functional Diversification and Dynamics of CAR-T Cells in B-ALL Patients
Functional Diversification and Dynamics of CAR-T Cells in B-ALL Patients
Chimeric antigen receptor-engineered (CAR)-T cell therapy represents one of the most promising strategies of cancer treatment, and the function and persistence of CAR-T cells in vi...
Selinexor Reduces the Immunosuppressive Properties of Macrophages and Synergizes with CD19 CAR-T Cells Against B-Cell Lymphoma
Selinexor Reduces the Immunosuppressive Properties of Macrophages and Synergizes with CD19 CAR-T Cells Against B-Cell Lymphoma
Background: CD19 chimeric antigen receptor (CAR)-T cell therapy has achieved high response rates in patients with B-cell lymphoma (BCL). However, treatment failure and relapse can ...
Combinatorial Antigen Targeting Strategy for Acute Myeloid Leukemia
Combinatorial Antigen Targeting Strategy for Acute Myeloid Leukemia
Introduction: Efforts to safely and effectively treat acute myeloid leukemia (AML) by targeting a single leukemia associated antigen with chimeric antigen receptor T (CAR T) cells ...
Abstract 1777: A non-signaling CAR for gamma-delta (γδ) T cells to preserve healthy tissues
Abstract 1777: A non-signaling CAR for gamma-delta (γδ) T cells to preserve healthy tissues
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy for B cell leukemias and lymphomas have shown remarkable responses in the clinic. However, the elimination ...
Stem cells
Stem cells
What is a stem cell? The term is a combination of ‘cell’ and ‘stem’. A cell is a major category of living thing, while a stem is a site of growth and support for something else. In...
Abstract 1490: Dual chlorotoxin and methylguanine methyltransferase γδ-T cells for drug resistant immunotherapy of glioblastoma multiforme
Abstract 1490: Dual chlorotoxin and methylguanine methyltransferase γδ-T cells for drug resistant immunotherapy of glioblastoma multiforme
Abstract
While recent advances in immunotherapies have shown promise in extracranial tumors, Glioblastoma Multiforme (GBM) has remained impervious to these advances ...
CAR-macrophages targets CD26 to eliminate chronic myeloid leukemia stem cells
CAR-macrophages targets CD26 to eliminate chronic myeloid leukemia stem cells
Abstract
Background
Chronic myeloid leukemia stem cells (CML-LSCs), which exhibit resistance to tyrosine kinase inhibitors (TKIs), are the leadin...

