Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Inhibition of DNA repair protein RAD51 affects porcine preimplantation embryo development

View through CrossRef
Homologous recombination (HR) plays a critical role in facilitating replication fork progression when the polymerase complex encounters a blocking DNA lesion, and it also serves as the primary mechanism for error-free DNA repair of double-stranded breaks. DNA repair protein RAD51 homolog 1 (RAD51) plays a central role in HR. However, the role of RAD51 during porcine early embryo development is unknown. In the present study, we examined whether RAD51 is involved in the regulation of early embryonic development of porcine parthenotes. We found that inhibition of RAD51 delayed cleavage and ceased development before the blastocyst stage. Disrupting RAD51 activity with RNAi or an inhibitor induces sustained DNA damage, as demonstrated by the formation of distinct γH2AX foci in nuclei of four-cell embryos. Inhibiting RAD51 triggers a DNA damage checkpoint by activating the ataxia telangiectasia mutated (ATM)–p53–p21 pathway. Furthermore, RAD51 inhibition caused apoptosis, reactive oxygen species accumulation, abnormal mitochondrial distribution and decreased pluripotent gene expression in blastocysts. Thus, our results indicate that RAD51 is required for proper porcine parthenogenetic activation (PA) embryo development.
Title: Inhibition of DNA repair protein RAD51 affects porcine preimplantation embryo development
Description:
Homologous recombination (HR) plays a critical role in facilitating replication fork progression when the polymerase complex encounters a blocking DNA lesion, and it also serves as the primary mechanism for error-free DNA repair of double-stranded breaks.
DNA repair protein RAD51 homolog 1 (RAD51) plays a central role in HR.
However, the role of RAD51 during porcine early embryo development is unknown.
In the present study, we examined whether RAD51 is involved in the regulation of early embryonic development of porcine parthenotes.
We found that inhibition of RAD51 delayed cleavage and ceased development before the blastocyst stage.
Disrupting RAD51 activity with RNAi or an inhibitor induces sustained DNA damage, as demonstrated by the formation of distinct γH2AX foci in nuclei of four-cell embryos.
Inhibiting RAD51 triggers a DNA damage checkpoint by activating the ataxia telangiectasia mutated (ATM)–p53–p21 pathway.
Furthermore, RAD51 inhibition caused apoptosis, reactive oxygen species accumulation, abnormal mitochondrial distribution and decreased pluripotent gene expression in blastocysts.
Thus, our results indicate that RAD51 is required for proper porcine parthenogenetic activation (PA) embryo development.

Related Results

Remodeling of the Rad51 DNA Strand-Exchange Protein by the Srs2 Helicase
Remodeling of the Rad51 DNA Strand-Exchange Protein by the Srs2 Helicase
Abstract Homologous recombination is associated with the dynamic assembly and disassembly of DNA–protein complexes. Assembly of a nucleoprotein filament comprising s...
Human AAA+ ATPase FIGNL1 suppresses RAD51-mediated ultra-fine bridge formation
Human AAA+ ATPase FIGNL1 suppresses RAD51-mediated ultra-fine bridge formation
Abstract RAD51 filament is crucial for the homology-dependent repair of DNA double-strand breaks and stalled DNA replication fork protection. Positive and negative r...
The Role of Helicases and Helicase-like Proteins in Homologous Recombination
The Role of Helicases and Helicase-like Proteins in Homologous Recombination
Homologous recombination is important for repair of the most harmful types of DNA damage including DNA double-strand breaks, interstrand cross-links, and for chromosome segregation...
Shu complex is an ATPase that regulates Rad51 filaments in homologous recombination-directed DNA damage response
Shu complex is an ATPase that regulates Rad51 filaments in homologous recombination-directed DNA damage response
AbstractRad51 filaments are Rad51-coated single-stranded DNA and essential intermediates in homologous recombination (HR) and the HR-associated DNA damage response. The yeast Shu c...
Genome wide hypomethylation and youth-associated DNA gap reduction promoting DNA damage and senescence-associated pathogenesis
Genome wide hypomethylation and youth-associated DNA gap reduction promoting DNA damage and senescence-associated pathogenesis
Abstract Background: Age-associated epigenetic alteration is the underlying cause of DNA damage in aging cells. Two types of youth-associated DNA-protection epigenetic mark...
Debate 4: Morphological Assessment of Embryos is Outdated
Debate 4: Morphological Assessment of Embryos is Outdated
Motion: For The Outdated Significance of Morphological Assessment in Embryo Selection and the Rise of Advanced Technologies in Reproductive Medicine This symposium lecture presen...
RAD51 135G>C Single Nucleotide Polymorphism and Risk of Breast Cancer in Selected Filipino Cases
RAD51 135G>C Single Nucleotide Polymorphism and Risk of Breast Cancer in Selected Filipino Cases
The RAD51 gene encodes the protein that plays a central role in the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway. Association of RAD51 sin...
Abstract 1490: RAD51C-deficient cancer cells require DNA polymerase zeta to bypass cisplatin-induced lesion
Abstract 1490: RAD51C-deficient cancer cells require DNA polymerase zeta to bypass cisplatin-induced lesion
RAD51C is a RAD51 paralog protein that mediates RAD51 filament formation on single-stranded DNA (ssDNA) in a canonical homologous recombination (HR) pathway. This step is vital for...

Back to Top