Javascript must be enabled to continue!
Single Image De-Raining using Supervised CNN Model
View through CrossRef
Abstract: An image captured in rain reduces the visibility quality of image which affects the analytical task like detecting objects and classifying pictures. Hence, image de-raining became important in last few years. Since pictures taken in rain include rain streaks of all sizes, single image de-raining is becoming much difficult issue to solve, which may flow in different direction and the density of each rain streak is different. Rain streaks have a varied effect on various areas of picture, and hence it becomes important for removing rain streak from rainy pictures as rainy images tend to lose its high frequency information; previously many methods were proposed for this purpose but they failed to provide accurate results. Hence we have studied and implemented a supervised machine learning method using convolutional neural network (CNN) algorithm to get more accurate result of rain streak removal from an image captured during rain and in less elapsed time by preserving high rated information of image during removal of rain streak. Keywords: CNN, elapsed time, single image de-raining, supervised machine learning, rain streaks.
International Journal for Research in Applied Science and Engineering Technology (IJRASET)
Title: Single Image De-Raining using Supervised CNN Model
Description:
Abstract: An image captured in rain reduces the visibility quality of image which affects the analytical task like detecting objects and classifying pictures.
Hence, image de-raining became important in last few years.
Since pictures taken in rain include rain streaks of all sizes, single image de-raining is becoming much difficult issue to solve, which may flow in different direction and the density of each rain streak is different.
Rain streaks have a varied effect on various areas of picture, and hence it becomes important for removing rain streak from rainy pictures as rainy images tend to lose its high frequency information; previously many methods were proposed for this purpose but they failed to provide accurate results.
Hence we have studied and implemented a supervised machine learning method using convolutional neural network (CNN) algorithm to get more accurate result of rain streak removal from an image captured during rain and in less elapsed time by preserving high rated information of image during removal of rain streak.
Keywords: CNN, elapsed time, single image de-raining, supervised machine learning, rain streaks.
Related Results
REAL-TIME DETECTIONS OF OPENED-CLOSED EYES USING CONVOLUTIONAL NEURAL NETWORK
REAL-TIME DETECTIONS OF OPENED-CLOSED EYES USING CONVOLUTIONAL NEURAL NETWORK
The sleepy condition can affect changing behaviors in the human body, and one part of the human body that gets this effect is the eye; eyes are narrower than in normal conditions, ...
Implementasi Convolutional Neural Network dalam Mengenali Image Angka Tulisan Tangan
Implementasi Convolutional Neural Network dalam Mengenali Image Angka Tulisan Tangan
Abstract. Advances in information technology and artificial intelligence, particularly in the field of machine learning, have had a significant impact on various aspects of daily l...
Double Exposure
Double Exposure
I. Happy Endings
Chaplin’s Modern Times features one of the most subtly strange endings in Hollywood history. It concludes with the Tramp (Chaplin) and the Gamin (Paulette Godda...
UAV-Based Bridge Inspection via Transfer Learning
UAV-Based Bridge Inspection via Transfer Learning
As bridge inspection becomes more advanced and more ubiquitous, artificial intelligence (AI) techniques, such as machine and deep learning, could offer suitable solutions to the na...
Establishment and Application of the Multi-Peak Forecasting Model
Establishment and Application of the Multi-Peak Forecasting Model
Abstract
After the development of the oil field, it is an important task to predict the production and the recoverable reserve opportunely by the production data....
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...
Evaluation of Efficacy of Artificial Intelligence in Orthopantomogram in Detecting and Classifying Radiolucent Lesions
Evaluation of Efficacy of Artificial Intelligence in Orthopantomogram in Detecting and Classifying Radiolucent Lesions
Abstract
Aim and Objective:
The objective of our study was to build a convolutional neural network (CNN) model and detection and classification o...
A ROBUST-TEXTURE CONVOLUTIONAL NEURAL NETWORK
A ROBUST-TEXTURE CONVOLUTIONAL NEURAL NETWORK
AlexNet was a breakthrough for the convolutional neural network (CNN) and showed the greatest successful mod- ified CNN that works well with large-scale images. However, it was uns...

