Javascript must be enabled to continue!
The Sec14-like phosphatidylinositol transfer proteins Sec14l3/SEC14L2 act as GTPase proteins to mediate Wnt/Ca2+ signaling
View through CrossRef
The non-canonical Wnt/Ca2+ signaling pathway plays important roles in embryonic development, tissue formation and diseases. However, it is unclear how the Wnt ligand-stimulated, G protein-coupled receptor Frizzled activates phospholipases for calcium release. Here, we report that the zebrafish/human phosphatidylinositol transfer protein Sec14l3/SEC14L2 act as GTPase proteins to transduce Wnt signals from Frizzled to phospholipase C (PLC). Depletion of sec14l3 attenuates Wnt/Ca2+ responsive activity and causes convergent and extension (CE) defects in zebrafish embryos. Biochemical analyses in mammalian cells indicate that Sec14l3-GDP forms complex with Frizzled and Dishevelled; Wnt ligand binding of Frizzled induces translocation of Sec14l3 to the plasma membrane; and then Sec14l3-GTP binds to and activates phospholipase Cδ4a (Plcδ4a); subsequently, Plcδ4a initiates phosphatidylinositol-4,5-bisphosphate (PIP2) signaling, ultimately stimulating calcium release. Furthermore, Plcδ4a can act as a GTPase-activating protein to accelerate the hydrolysis of Sec14l3-bound GTP to GDP. Our data provide a new insight into GTPase protein-coupled Wnt/Ca2+ signaling transduction.
eLife Sciences Publications, Ltd
Title: The Sec14-like phosphatidylinositol transfer proteins Sec14l3/SEC14L2 act as GTPase proteins to mediate Wnt/Ca2+ signaling
Description:
The non-canonical Wnt/Ca2+ signaling pathway plays important roles in embryonic development, tissue formation and diseases.
However, it is unclear how the Wnt ligand-stimulated, G protein-coupled receptor Frizzled activates phospholipases for calcium release.
Here, we report that the zebrafish/human phosphatidylinositol transfer protein Sec14l3/SEC14L2 act as GTPase proteins to transduce Wnt signals from Frizzled to phospholipase C (PLC).
Depletion of sec14l3 attenuates Wnt/Ca2+ responsive activity and causes convergent and extension (CE) defects in zebrafish embryos.
Biochemical analyses in mammalian cells indicate that Sec14l3-GDP forms complex with Frizzled and Dishevelled; Wnt ligand binding of Frizzled induces translocation of Sec14l3 to the plasma membrane; and then Sec14l3-GTP binds to and activates phospholipase Cδ4a (Plcδ4a); subsequently, Plcδ4a initiates phosphatidylinositol-4,5-bisphosphate (PIP2) signaling, ultimately stimulating calcium release.
Furthermore, Plcδ4a can act as a GTPase-activating protein to accelerate the hydrolysis of Sec14l3-bound GTP to GDP.
Our data provide a new insight into GTPase protein-coupled Wnt/Ca2+ signaling transduction.
Related Results
Ca2+ entry through Na(+)‐Ca2+ exchange can trigger Ca2+ release from Ca2+ stores in Na(+)‐loaded guinea‐pig coronary myocytes.
Ca2+ entry through Na(+)‐Ca2+ exchange can trigger Ca2+ release from Ca2+ stores in Na(+)‐loaded guinea‐pig coronary myocytes.
1. The ionized cytosolic calcium concentration ([Ca2+]i) was monitored in voltage‐clamped coronary myocytes at 36 degrees C and 2.5 mM [Ca2+]o using the Ca2+ indicator indo‐1. [Ca2...
Computational analysis of Ca2+ dynamics in isolated cardiac mitochondria predicts two distinct modes of Ca2+ uptake
Computational analysis of Ca2+ dynamics in isolated cardiac mitochondria predicts two distinct modes of Ca2+ uptake
Key points
Cytosolic, but not matrix, Mg2+ inhibits mitochondrial Ca2+ uptake through the Ca2+ uniporter (CU).
The majority of mitochondrial Ca2+ uptake under physiological levels ...
Na+/Ca2+ exchange current in ventricular myocytes of fish heart: contribution to sarcolemmal Ca2+ influx
Na+/Ca2+ exchange current in ventricular myocytes of fish heart: contribution to sarcolemmal Ca2+ influx
ABSTRACT
Influx of extracellular Ca2+ plays a major role in the activation of contraction in fish cardiac cells. The relative contributions of Na+/Ca2+ exchange and ...
WNT Receptor Requirements for Dishevelled Phosphorylation
WNT Receptor Requirements for Dishevelled Phosphorylation
The Dishevelled (DVL) protein is a key component of WNT signaling that relays signals from receptors to downstream effectors. It has been shown that following WNT ligand binding to...
The emergence of subcellular pacemaker sites for calcium waves and oscillations
The emergence of subcellular pacemaker sites for calcium waves and oscillations
Key points
Calcium (Ca2+) is fundamental to biological cell function, and Ca2+ waves generating oscillatory Ca2+ signals are widely observed in many cell types.
Some experimental s...
Abstract 1584: Wnt/beta-catenin and Foxa2 axis activates AR signaling in castration resistant prostate cancer
Abstract 1584: Wnt/beta-catenin and Foxa2 axis activates AR signaling in castration resistant prostate cancer
Abstract
Background: Prostate cancer (PCa) is the leading cancer among men in the world. Androgen deprivation therapy is a common treatment to cease prostate growth....
WNT Signaling Pathway and Stem Cell Signaling Network
WNT Signaling Pathway and Stem Cell Signaling Network
Abstract
WNT signals are transduced to the canonical pathway for cell fate determination, and to the noncanonical pathway for control of cell movement and tissue pol...
Mechanism of Ca2+Transport by Sarcoplasmic Reticulum
Mechanism of Ca2+Transport by Sarcoplasmic Reticulum
AbstractThe sections in this article are:Structure of Sarcoplasmic Reticulum and Transverse TubulesStructure of Plasmalemma and T TubulesSarcoplasmic ReticulumJunction Between T Tu...

