Javascript must be enabled to continue!
Multi-layer Hydrocarbon Accumulation Model in Yuqi area, Tarim Basin, China
View through CrossRef
The superimposed basins in western China have undergone multiple periods of tectonic changes and cycles of oil and gas accumulation, and the distribution patterns of oil and gas are very complex, which limits the accurate understanding of the mechanisms of oil and gas accumulation. In this paper, Yuqi area in Tarim Basin is taken as the research area, and based on the geological background, fluid inclusion-homogenization temperature, hydrocarbon inclusion abundance analysis, reservoir quantitative fluorescence technology, infrared spectrum, crude oil geochemical analysis, reservoir asphalt identification and other technologies, the Ordovician-Triassic oil and gas accumulation, migration and adjustment process in Yuqi area is studied. The results indicate that the Ordovician system in the study area developed oil injection during the Late Caledonian, Yanshanian, and Himalayan periods. The Triassic system only had oil injection during the Himalayan period, slightly later than the Ordovician system during the same period. The crude oil injected by the Ordovician in the late Caledonian period was biodegraded into heavy oil and carbonaceous bitumen due to tectonic uplift. Light oil from the Yuertus Formation source rock during the Yanshan-Himalayan period was vertically injected into the Ordovician reservoir along activated faults, and then mixed and transformed early heavy oil reservoirs through lateral adjustment along karst. A certain range of light oil reservoirs were formed in the heavy oil reservoir area. In the late Himalayan period, the light/heavy oil reservoirs mixed and filled by the Ordovician system were locally adjusted upwards along faults to the Triassic system, making the crude oil of the Triassic system, which had stable structures and no degradation conditions, similar to the crude oil of the Ordovician system in terms of crude oil density, maturity, inclusion abundance, biodegradation characteristics, and partially mix with late mature oil and gas that migrated along the Luntai fault-sand body, forming the sporadic distribution characteristics of light and heavy oil reservoirs in the Triassic system today. Therefore, a reservoir formation model of "vertical transport along faults, lateral adjustment along karst, strong degradation, and differential superposition" was established for the Ordovician, and " T-shaped transport along fault-sand and late stage reservoir formation " was established for the Triassic in the Yuqi area.The research have important guiding and reference significance for shallow-deep oil and gas exploration in the Yuqi area.
Title: Multi-layer Hydrocarbon Accumulation Model in Yuqi area, Tarim Basin, China
Description:
The superimposed basins in western China have undergone multiple periods of tectonic changes and cycles of oil and gas accumulation, and the distribution patterns of oil and gas are very complex, which limits the accurate understanding of the mechanisms of oil and gas accumulation.
In this paper, Yuqi area in Tarim Basin is taken as the research area, and based on the geological background, fluid inclusion-homogenization temperature, hydrocarbon inclusion abundance analysis, reservoir quantitative fluorescence technology, infrared spectrum, crude oil geochemical analysis, reservoir asphalt identification and other technologies, the Ordovician-Triassic oil and gas accumulation, migration and adjustment process in Yuqi area is studied.
The results indicate that the Ordovician system in the study area developed oil injection during the Late Caledonian, Yanshanian, and Himalayan periods.
The Triassic system only had oil injection during the Himalayan period, slightly later than the Ordovician system during the same period.
The crude oil injected by the Ordovician in the late Caledonian period was biodegraded into heavy oil and carbonaceous bitumen due to tectonic uplift.
Light oil from the Yuertus Formation source rock during the Yanshan-Himalayan period was vertically injected into the Ordovician reservoir along activated faults, and then mixed and transformed early heavy oil reservoirs through lateral adjustment along karst.
A certain range of light oil reservoirs were formed in the heavy oil reservoir area.
In the late Himalayan period, the light/heavy oil reservoirs mixed and filled by the Ordovician system were locally adjusted upwards along faults to the Triassic system, making the crude oil of the Triassic system, which had stable structures and no degradation conditions, similar to the crude oil of the Ordovician system in terms of crude oil density, maturity, inclusion abundance, biodegradation characteristics, and partially mix with late mature oil and gas that migrated along the Luntai fault-sand body, forming the sporadic distribution characteristics of light and heavy oil reservoirs in the Triassic system today.
Therefore, a reservoir formation model of "vertical transport along faults, lateral adjustment along karst, strong degradation, and differential superposition" was established for the Ordovician, and " T-shaped transport along fault-sand and late stage reservoir formation " was established for the Triassic in the Yuqi area.
The research have important guiding and reference significance for shallow-deep oil and gas exploration in the Yuqi area.
Related Results
Dynamic Field Division of Hydrocarbon Migration, Accumulation and Hydrocarbon Enrichment Rules in Sedimentary Basins
Dynamic Field Division of Hydrocarbon Migration, Accumulation and Hydrocarbon Enrichment Rules in Sedimentary Basins
Abstract:Hydrocarbon distribution rules in the deep and shallow parts of sedimentary basins are considerably different, particularly in the following four aspects. First, the criti...
Quantitative Analysis Model and Application of the Hydrocarbon Distribution Threshold
Quantitative Analysis Model and Application of the Hydrocarbon Distribution Threshold
AbstractHydrocarbon source rock obviously controls the formation and distribution of hydrocarbon reservoirs. Based on the geological concept of “source control theory”, the concept...
Hydrocarbon Accumulation Process and Exploration Potential of Shizigou-Yingdong Area, Western Qaidam Basin
Hydrocarbon Accumulation Process and Exploration Potential of Shizigou-Yingdong Area, Western Qaidam Basin
Abstract
In recent years, with the successful drilling of Sha37 and Sha 40 wells and discovery of Yingdong No.1 oil field, great breakthrough had been achieved in...
Secondary Migration Trend Based on Basin Modeling: A Case Study of the Cambrian Petroleum System in the Tarim Basin
Secondary Migration Trend Based on Basin Modeling: A Case Study of the Cambrian Petroleum System in the Tarim Basin
Secondary hydrocarbon migration is an important aspect of oil-gas accumulation research. While previous studies have relied on geological and fluid geochemical characteristics to p...
İstihdamda Tarım Sektörünün Seyri: Türkiye’deki Değişimler ve Gelecek Görünümü
İstihdamda Tarım Sektörünün Seyri: Türkiye’deki Değişimler ve Gelecek Görünümü
Öz
Bu çalışma ile Türkiye tarım sektörüne ait istihdamın yapısal analizi ve unsurları değerlendirilmiştir. Bunun için öncelikle tarım işlerinin tanımı ve kapsamına ilişkin kavramla...
On the Rock-basins in the Granite of the Dartmoor District, Devonshire
On the Rock-basins in the Granite of the Dartmoor District, Devonshire
In this Memoir the origin of Rock-basins in the Granite of Dartmoor and its vicinity is alone considered; and it is not attempted to draw therefrom any law as to the manner of the ...
Pre-Stack Detailed Frequency Variation Study and Application in Complex Sandstone Reservoir Hydrocarbon Detection
Pre-Stack Detailed Frequency Variation Study and Application in Complex Sandstone Reservoir Hydrocarbon Detection
Bohai oilfield is an important offshore oil and gas producing area in China. The fluvial sandstone reservoir is an important production series, which accounts for about 45% in the ...
Minerogenic Theory of the Superlarge Lop Nur Potash Deposit, Xinjiang, China
Minerogenic Theory of the Superlarge Lop Nur Potash Deposit, Xinjiang, China
Abstract Located in the eastern part of the Tarim basin, Xinjiang, the Lop Nur was an ultimate water catchment area of the Tarim basin during the Quaternary. Through nearly ten ye...

