Javascript must be enabled to continue!
Metasurface waves in digital optics
View through CrossRef
Abstract
Digital optics is a new discipline that aims to replace traditional curved and bulky optical elements with flat and thin ones that can be intelligently designed by a computer and be compatible with the mature semiconductor fabrication industry. Metasurface-based digital optics is characterized by enhanced or multifunctional performances, a compact footprint, and most importantly the ability to break the limitations of conventional refractive, reflective and diffractive optics. The structural inclusions on the subwavelength scale can tremendously change the light fields and give rise to novel electromagnetic modes. In particular, the coupled evanescent fields within the subwavelength structures form a special kind of wave, termed a metasurface wave (M-wave), possessing many interesting properties. This article provides a short perspective of M-waves in digital optics, with particular emphasis on the representative applications in metalenses, photolithography, and optical phased array, etc. Finally, an outlook on the generalized diffraction limit and intelligent digital optics is presented.
Title: Metasurface waves in digital optics
Description:
Abstract
Digital optics is a new discipline that aims to replace traditional curved and bulky optical elements with flat and thin ones that can be intelligently designed by a computer and be compatible with the mature semiconductor fabrication industry.
Metasurface-based digital optics is characterized by enhanced or multifunctional performances, a compact footprint, and most importantly the ability to break the limitations of conventional refractive, reflective and diffractive optics.
The structural inclusions on the subwavelength scale can tremendously change the light fields and give rise to novel electromagnetic modes.
In particular, the coupled evanescent fields within the subwavelength structures form a special kind of wave, termed a metasurface wave (M-wave), possessing many interesting properties.
This article provides a short perspective of M-waves in digital optics, with particular emphasis on the representative applications in metalenses, photolithography, and optical phased array, etc.
Finally, an outlook on the generalized diffraction limit and intelligent digital optics is presented.
Related Results
Utra-thin single-layered high-efficiency focusing metasurface lens
Utra-thin single-layered high-efficiency focusing metasurface lens
For potential applications of metasurfaces in lens technologies, we propose a cross circularly polarized focusing metasurface which is capable of transforming a circularly polarize...
Broadband Waterborne Multiphase Metasurface with Simultaneous Wavefront Manipulation and Energy Absorption
Broadband Waterborne Multiphase Metasurface with Simultaneous Wavefront Manipulation and Energy Absorption
Acoustic metasurface are artificial structures which could manipulate the wavefront in sub-wavelength dimensions and the previous proposed acoustic metasurface were mostly realized...
Research on Demand Design Method of Cross Polarization Converter Metasurface Based on Depth Generation Model
Research on Demand Design Method of Cross Polarization Converter Metasurface Based on Depth Generation Model
As a two-dimensional electromagnetic metamaterial, the cross-polarization conversion (CPC) metasurface is thin, easy to develop, and has attracted wide attention. However, existing...
Research on Demand Design Method of Cross Polarization Converter Metasurface Based on Depth Generation Model
Research on Demand Design Method of Cross Polarization Converter Metasurface Based on Depth Generation Model
As a two-dimensional electromagnetic metamaterial, the cross-polarization conversion (CPC) metasurface is thin, easy to develop, and has attracted wide attention. However, existing...
Magnetless circulator based on phase gradient metasurface
Magnetless circulator based on phase gradient metasurface
Circulators are widely used microwave components that rely on magnetic materials. They have been a subject of extensively theoretical and experimental development for over 50 years...
Error analysis of a rotating-metasurface polarimeter
Error analysis of a rotating-metasurface polarimeter
Polarimeters, which measure the polarization states of light directly, are essentially desired in many areas of science and technology. In our previous work, we have constructed a ...
Oscillatory frequencies in spatiotemporal system with local inhomogeneity
Oscillatory frequencies in spatiotemporal system with local inhomogeneity
Target waves usually emit concentric circular waves, whereas spiral waves rotate around a central core (topological defect) region, the two forms of waves are closely related due t...
Generation and modulation of shock waves in two-dimensional polariton condensates
Generation and modulation of shock waves in two-dimensional polariton condensates
Due to the ability of exciton-polariton condensates formed in semiconductor microcavities to be achieved at room temperature and their characteristics such as non-equilibrium and s...

