Javascript must be enabled to continue!
Experimental study on the effect of foam in preventing gas channeling in shale reservoir
View through CrossRef
Shale oil resources have enormous potential and broad development prospects in China. Especially with the rapid development of horizontal well volume fracturing technology, the production of shale oil has been greatly increased, and it has become an important position to increase oil and gas storage and production. However, due to the existence of artificial and natural fractures produced by fracturing, gas channeling will occur in the process of huff-n-puff gas injection, which will affect the production and lead to poor development effect. In this paper, foam is used as an anti-channeling agent in the process of huff-n-puff gas injection. The results of microfluidic experiments show that the production mode of foam in porous media is liquid membrane hysteresis and liquid membrane separation. In porous media, foam first blocks large channels such as fractures, and then enters the matrix. The oil recovery mechanism of foam assisted gas injection in porous media is to improve the sweep efficiency and oil displacement efficiency of gas. Compared with N2 huff-n-puff, the oil recovery of the first cycle of foam assisted N2 huff-n-puff increased by 4.50%, and the third cycle increased by 9.58%. It is proved that foam has good anti channeling effect in gas huff-n-puff injection process. The research results provide an effective method for efficient gas injection development of shale oil.
Title: Experimental study on the effect of foam in preventing gas channeling in shale reservoir
Description:
Shale oil resources have enormous potential and broad development prospects in China.
Especially with the rapid development of horizontal well volume fracturing technology, the production of shale oil has been greatly increased, and it has become an important position to increase oil and gas storage and production.
However, due to the existence of artificial and natural fractures produced by fracturing, gas channeling will occur in the process of huff-n-puff gas injection, which will affect the production and lead to poor development effect.
In this paper, foam is used as an anti-channeling agent in the process of huff-n-puff gas injection.
The results of microfluidic experiments show that the production mode of foam in porous media is liquid membrane hysteresis and liquid membrane separation.
In porous media, foam first blocks large channels such as fractures, and then enters the matrix.
The oil recovery mechanism of foam assisted gas injection in porous media is to improve the sweep efficiency and oil displacement efficiency of gas.
Compared with N2 huff-n-puff, the oil recovery of the first cycle of foam assisted N2 huff-n-puff increased by 4.
50%, and the third cycle increased by 9.
58%.
It is proved that foam has good anti channeling effect in gas huff-n-puff injection process.
The research results provide an effective method for efficient gas injection development of shale oil.
Related Results
Foam Injection Test in the Siggins Field, Illinois
Foam Injection Test in the Siggins Field, Illinois
A pilot test in this tired, old field, confirmed the laboratory-derived conclusion that foam can do more than soften a beard or ruin a river. It can decrease the mobility of gas an...
EffectiveFracturing Technology of Normal Pressure Shale Gas Wells
EffectiveFracturing Technology of Normal Pressure Shale Gas Wells
ABSTRACT
There is abundant normal pressure shale gas resource in China. However, it is hard to acquire commercial breakthroughs because of the relative low initia...
Foam Flood in Yates Reservoir for Improving Oil Recovery
Foam Flood in Yates Reservoir for Improving Oil Recovery
Abstract
The Yates reservoir is a major, multibillion-barrel legacy oil reservoir in West Texas discovered in 1926. Oil production mainly comes from the San Andres f...
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Extended abstract
Tight sands gas, coalbed methane and shale gas are three kinds of typical unconventional natural gas. With the decrease of conventional oil and gas...
Geological Characteristics of Shale Reservoir of Pingdiquan Formation in Huoshaoshan Area, Junggar Basin
Geological Characteristics of Shale Reservoir of Pingdiquan Formation in Huoshaoshan Area, Junggar Basin
Unconventional oil and gas, represented by shale gas and shale oil, have occupied an important position in global energy. The rapid growth of shale gas and shale oil production sho...
Synthèse géologique et hydrogéologique du Shale d'Utica et des unités sus-jacentes (Lorraine, Queenston et dépôts meubles), Basses-Terres du Saint-Laurent, Québec
Synthèse géologique et hydrogéologique du Shale d'Utica et des unités sus-jacentes (Lorraine, Queenston et dépôts meubles), Basses-Terres du Saint-Laurent, Québec
Le présent travail a été initié dans le cadre d'un mandat donné à l'INRS-ETE par la Commission géologique du Canada (CGC) et le Ministère du Développement durable, de l'Environneme...
Multi-Interbedded Continental Shale Reservoir Evaluation and Fracturing Practice
Multi-Interbedded Continental Shale Reservoir Evaluation and Fracturing Practice
ABSTRACT:
Continental shale oil resources are abundant in Sichuan Basin in China, according to multiple limestone interbeds and variable longitudinal stress chara...
The Adaptability Research of Steam Flooding Assisted by Nitrogen Foam in Henan Oilfield
The Adaptability Research of Steam Flooding Assisted by Nitrogen Foam in Henan Oilfield
Abstract
With the further study on foaming agent performance, steam flooding assisted by nitrogen foam has been applied more widely. But the flexibility of this t...

