Javascript must be enabled to continue!
Motion behaviors of droplets containing Au nanoparticles on a superhydrophobic laser-induced graphene surface
View through CrossRef
The movement of nanoparticle-containing droplets on solid surfaces significantly affects the distribution of the nanoparticles and is of great interest in the fields of two-phase separation, biosensing detection, inkjet printing, and microarrays. There has been little research on the initiation and motion behaviors of colloidal droplets containing nanoparticles on superhydrophobic surfaces. Here, we prepare superhydrophobic laser-induced graphene (LIG) surfaces with excellent depinning effects using an extremely simple method and explore the formation mechanism of the depinning-LIG surfaces. The reduction of nano-graphene fibers and the increased hydroxyl group ratio after alcohol modification further enhance the hydrophobic properties of depinning-LIG, reducing its surface adhesion. The initial and continuous motion of droplets containing Au nanoparticles (AuNPs) on these superhydrophobic surfaces under airflow is studied using high-speed microscopy. The coupling effects of the droplet size, surface properties, airflow velocity, and nanoparticles on the droplet motion behaviors are analyzed. The dimensionless parameter G is incorporated to obtain the partition diagram of AuNP droplet motion behaviors on depinning-LIG surfaces, which delineate the critical conditions for droplet “oscillation,” “initiate sliding,” and “continuous rolling” as a function of system parameters. For AuNP droplets, the viscous force Fγ,p exerted by the nanoparticles on the contact line significantly affects the droplet movement behaviors. In addition, a mathematical model about the competition of dynamic forces and resistance is established to describe the motion of AuNP droplets, and the critical conditions for different motion behaviors of the droplet are clarified to guide practical applications.
AIP Publishing
Title: Motion behaviors of droplets containing Au nanoparticles on a superhydrophobic laser-induced graphene surface
Description:
The movement of nanoparticle-containing droplets on solid surfaces significantly affects the distribution of the nanoparticles and is of great interest in the fields of two-phase separation, biosensing detection, inkjet printing, and microarrays.
There has been little research on the initiation and motion behaviors of colloidal droplets containing nanoparticles on superhydrophobic surfaces.
Here, we prepare superhydrophobic laser-induced graphene (LIG) surfaces with excellent depinning effects using an extremely simple method and explore the formation mechanism of the depinning-LIG surfaces.
The reduction of nano-graphene fibers and the increased hydroxyl group ratio after alcohol modification further enhance the hydrophobic properties of depinning-LIG, reducing its surface adhesion.
The initial and continuous motion of droplets containing Au nanoparticles (AuNPs) on these superhydrophobic surfaces under airflow is studied using high-speed microscopy.
The coupling effects of the droplet size, surface properties, airflow velocity, and nanoparticles on the droplet motion behaviors are analyzed.
The dimensionless parameter G is incorporated to obtain the partition diagram of AuNP droplet motion behaviors on depinning-LIG surfaces, which delineate the critical conditions for droplet “oscillation,” “initiate sliding,” and “continuous rolling” as a function of system parameters.
For AuNP droplets, the viscous force Fγ,p exerted by the nanoparticles on the contact line significantly affects the droplet movement behaviors.
In addition, a mathematical model about the competition of dynamic forces and resistance is established to describe the motion of AuNP droplets, and the critical conditions for different motion behaviors of the droplet are clarified to guide practical applications.
Related Results
Preparation of Graphene Fibers
Preparation of Graphene Fibers
Graphene owns intriguing properties in electronic, thermal, and mechanic with unique two-dimension (2D) monolayer structure. The new member of carbon family has not only attracted ...
Antimicrobial activity of ciprofloxacin-coated gold nanoparticles on selected pathogens
Antimicrobial activity of ciprofloxacin-coated gold nanoparticles on selected pathogens
Antibiotic resistance amongst bacterial pathogens is a crisis that has been worsening over recent decades, resulting in serious and often fatal infections that cannot be treated by...
Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors
Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors
Graphene, a 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, and high mechanical s...
NANOPARTICLES OF NOBLE METALS ON THE SURFACE OF GRAPHENE FLAKES
NANOPARTICLES OF NOBLE METALS ON THE SURFACE OF GRAPHENE FLAKES
Carbon is a spread element that has many different reaction combinations. Obtaining new composite materials based on nanoparticles is a very actual and perspective topic because na...
Multifunctional Superhydrophobic Surface for Oil‐Water Separation, Anti‐Icing, and Anti‐Corrosion via a Highly Stable Waterborne Superhydrophobic Emulsion
Multifunctional Superhydrophobic Surface for Oil‐Water Separation, Anti‐Icing, and Anti‐Corrosion via a Highly Stable Waterborne Superhydrophobic Emulsion
AbstractWaterborne superhydrophobic emulsions are of great significance in terms of the safety and sustainability of their production and application. Limited by the fact that hydr...
Exploring defects and induced magnetism in epitaxial graphene films
Exploring defects and induced magnetism in epitaxial graphene films
Graphene has been demonstrated to have unique properties not only in its virgin state but also by altering its environment through rotations in bilayer graphene, doping, and creati...
Corrosion Resistance and Durability of Superhydrophobic Copper Surface in Corrosive NaCl Aqueous Solution
Corrosion Resistance and Durability of Superhydrophobic Copper Surface in Corrosive NaCl Aqueous Solution
Artificial superhydrophobic copper surfaces play an important role in modern applications such as self-cleaning and dropwise condensation; however, corrosion resistance and durabil...
In-Situ Hydrogen-Induced Defects on the Single Layer CVD Growth Graphene
In-Situ Hydrogen-Induced Defects on the Single Layer CVD Growth Graphene
In this paper we present in-situ hydrogen-induced defects on the single layer CVD growth graphene sheets with reactive terminated edges and holes within the graphene matrix. The sa...

