Javascript must be enabled to continue!
Cell-autonomous role of leucine-rich repeat kinase in the protection of dopaminergic neuron survival
View through CrossRef
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson’s disease (PD). However, whether LRRK2 mutations cause PD and degeneration of dopaminergic (DA) neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies. In this study, we investigate whether Lrrk2 and its functional homolog Lrrk1 play a cell-intrinsic role in DA neuron survival through the development of DA neuron-specific Lrrk conditional double knockout (cDKO) mice. Unlike Lrrk germline DKO mice, DA neuron-restricted Lrrk cDKO mice exhibit normal mortality but develop age-dependent loss of DA neurons, as shown by the progressive reduction of DA neurons in the substantia nigra pars compacta (SNpc) at the ages of 20 and 24 months. Moreover, DA neurodegeneration is accompanied with increases in apoptosis and elevated microgliosis in the SNpc as well as decreases in DA terminals in the striatum, and is preceded by impaired motor coordination. Taken together, these findings provide the unequivocal evidence for the cell-intrinsic requirement of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.
eLife Sciences Publications, Ltd
Title: Cell-autonomous role of leucine-rich repeat kinase in the protection of dopaminergic neuron survival
Description:
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson’s disease (PD).
However, whether LRRK2 mutations cause PD and degeneration of dopaminergic (DA) neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies.
In this study, we investigate whether Lrrk2 and its functional homolog Lrrk1 play a cell-intrinsic role in DA neuron survival through the development of DA neuron-specific Lrrk conditional double knockout (cDKO) mice.
Unlike Lrrk germline DKO mice, DA neuron-restricted Lrrk cDKO mice exhibit normal mortality but develop age-dependent loss of DA neurons, as shown by the progressive reduction of DA neurons in the substantia nigra pars compacta (SNpc) at the ages of 20 and 24 months.
Moreover, DA neurodegeneration is accompanied with increases in apoptosis and elevated microgliosis in the SNpc as well as decreases in DA terminals in the striatum, and is preceded by impaired motor coordination.
Taken together, these findings provide the unequivocal evidence for the cell-intrinsic requirement of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.
Related Results
Different Sensitivity of Glucose and Amino Acid Metabolism to Insulin in NIDDM
Different Sensitivity of Glucose and Amino Acid Metabolism to Insulin in NIDDM
NIDDM subjects are characterized by impaired glucose tolerance and insulin resistance with respect to glucose metabolism. To examine whether the defect in glucose utilization exten...
Cometary Physics Laboratory: spectrophotometric experiments
Cometary Physics Laboratory: spectrophotometric experiments
<p><strong><span dir="ltr" role="presentation">1. Introduction</span></strong&...
Cell autonomous role of leucine-rich repeat kinase in protection of dopaminergic neuron survival
Cell autonomous role of leucine-rich repeat kinase in protection of dopaminergic neuron survival
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson’s disease (PD), which is the leading neurodegenerative movement disorder c...
Cell autonomous role of leucine-rich repeat kinase in protection of dopaminergic neuron survival
Cell autonomous role of leucine-rich repeat kinase in protection of dopaminergic neuron survival
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson’s disease (PD), which is the leading neurodegenerative movement disorder c...
Cell autonomous role of leucine-rich repeat kinase in protection of dopaminergic neuron survival
Cell autonomous role of leucine-rich repeat kinase in protection of dopaminergic neuron survival
AbstractMutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson’s disease (PD), which is the leading neurodegenerative movement disorder ch...
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...
Effect of leucine on intestinal absorption of tryptophan in rats
Effect of leucine on intestinal absorption of tryptophan in rats
1. To elucidate the causal relation between leucine and the lowering of hepatic NAD content of rats fed on a leucine-excessive diet (Yamadaet al.1979), the effect of leucine on int...
Arousal-State Dependent Alterations in VTA-GABAergic Neural Activity
Arousal-State Dependent Alterations in VTA-GABAergic Neural Activity
AbstractDecades of research have implicated the ventral tegmental area (VTA) in motivation, reinforcement learning and reward processing. We and others recently demonstrated that i...

