Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Loss of tet methyl cytosine dioxygenase 3 (TET3) enhances cardiac fibrosis via modulating the DNA damage repair response

View through CrossRef
Abstract Background Cardiac fibrosis is the hallmark of all forms of chronic heart disease. Activation and proliferation of cardiac fibroblasts are the prime mediators of cardiac fibrosis. Existing studies show that ROS and inflammatory cytokines produced during fibrosis not only signal proliferative stimuli but also contribute to DNA damage. Therefore, as a prerequisite to maintain sustained proliferation in fibroblasts, activation of distinct DNA repair mechanism is essential. Result In this study, we report that TET3, a DNA demethylating enzyme, which has been shown to be reduced in cardiac fibrosis and to exert antifibrotic effects does so not only through its demethylating activity but also through maintaining genomic integrity by facilitating error-free homologous recombination (HR) repair of DNA damage. Using both in vitro and in vivo models of cardiac fibrosis as well as data from human heart tissue, we demonstrate that the loss of TET3 in cardiac fibroblasts leads to spontaneous DNA damage and in the presence of TGF-β to a shift from HR to the fast but more error-prone non-homologous end joining repair pathway. This shift contributes to increased fibroblast proliferation in a fibrotic environment. In vitro experiments showed TET3’s recruitment to H2O2-induced DNA double-strand breaks (DSBs) in mouse cardiac fibroblasts, promoting HR repair. Overexpressing TET3 counteracted TGF-β-induced fibroblast proliferation and restored HR repair efficiency. Extending these findings to human cardiac fibrosis, we confirmed TET3 expression loss in fibrotic hearts and identified a negative correlation between TET3 levels, fibrosis markers, and DNA repair pathway alteration. Conclusion Collectively, our findings demonstrate TET3’s pivotal role in modulating DDR and fibroblast proliferation in cardiac fibrosis and further highlight TET3 as a potential therapeutic target. Graphical abstract
Title: Loss of tet methyl cytosine dioxygenase 3 (TET3) enhances cardiac fibrosis via modulating the DNA damage repair response
Description:
Abstract Background Cardiac fibrosis is the hallmark of all forms of chronic heart disease.
Activation and proliferation of cardiac fibroblasts are the prime mediators of cardiac fibrosis.
Existing studies show that ROS and inflammatory cytokines produced during fibrosis not only signal proliferative stimuli but also contribute to DNA damage.
Therefore, as a prerequisite to maintain sustained proliferation in fibroblasts, activation of distinct DNA repair mechanism is essential.
Result In this study, we report that TET3, a DNA demethylating enzyme, which has been shown to be reduced in cardiac fibrosis and to exert antifibrotic effects does so not only through its demethylating activity but also through maintaining genomic integrity by facilitating error-free homologous recombination (HR) repair of DNA damage.
Using both in vitro and in vivo models of cardiac fibrosis as well as data from human heart tissue, we demonstrate that the loss of TET3 in cardiac fibroblasts leads to spontaneous DNA damage and in the presence of TGF-β to a shift from HR to the fast but more error-prone non-homologous end joining repair pathway.
This shift contributes to increased fibroblast proliferation in a fibrotic environment.
In vitro experiments showed TET3’s recruitment to H2O2-induced DNA double-strand breaks (DSBs) in mouse cardiac fibroblasts, promoting HR repair.
Overexpressing TET3 counteracted TGF-β-induced fibroblast proliferation and restored HR repair efficiency.
Extending these findings to human cardiac fibrosis, we confirmed TET3 expression loss in fibrotic hearts and identified a negative correlation between TET3 levels, fibrosis markers, and DNA repair pathway alteration.
Conclusion Collectively, our findings demonstrate TET3’s pivotal role in modulating DDR and fibroblast proliferation in cardiac fibrosis and further highlight TET3 as a potential therapeutic target.
Graphical abstract.

Related Results

TETRANDRINE CONTROL PRO-INFLAMMATORY FACTOR TO REDUCE RAT MYOCARDIAL ISCHAEMIC/REPERFUSION INJURY
TETRANDRINE CONTROL PRO-INFLAMMATORY FACTOR TO REDUCE RAT MYOCARDIAL ISCHAEMIC/REPERFUSION INJURY
Objectives To investigate how tetrandrine through regulate the pro-inflammation factors TNF-α, IL-1β, IL-6 to attenuate rat ischaemic/reperfusion injury. ...
Genome wide hypomethylation and youth-associated DNA gap reduction promoting DNA damage and senescence-associated pathogenesis
Genome wide hypomethylation and youth-associated DNA gap reduction promoting DNA damage and senescence-associated pathogenesis
Abstract Background: Age-associated epigenetic alteration is the underlying cause of DNA damage in aging cells. Two types of youth-associated DNA-protection epigenetic mark...
MICRORNAS CONTROL CARDIAC FIBROSIS
MICRORNAS CONTROL CARDIAC FIBROSIS
Objectives Cardiac fibrosis is characterised by aberrant proliferation of cardiac fibroblasts and exaggerated deposition of extracellular matrix (ECM) in the myoc...
Abstract 13223: Split-Intein Mediated Adeno Associated Virus Delivery of CRISPR/dHFCas9-TET3CD as Antifibrotic Therapy
Abstract 13223: Split-Intein Mediated Adeno Associated Virus Delivery of CRISPR/dHFCas9-TET3CD as Antifibrotic Therapy
Introduction: Cardiac fibrosis is characterized by excessive deposition of extracellular matrix for which no specific therapy is available as of yet. Gene methylation p...
Short-Chain Acyl-CoA Dehydrogenase as a Therapeutic Target for Cardiac Fibrosis
Short-Chain Acyl-CoA Dehydrogenase as a Therapeutic Target for Cardiac Fibrosis
Abstract: Cardiac fibrosis is considered as unbalanced extracellular matrix production and degradation, contributing to heart failure. Short-chain acyl-CoA dehydrogenase ...
Mediator kinase submodule-dependent regulation of cardiac transcription
Mediator kinase submodule-dependent regulation of cardiac transcription
<p>Pathological cardiac remodeling results from myocardial stresses including pressure and volume overload, neurohumoral activation, myocardial infarction, and hypothyroidism...
Abstract 4679: A novel assay to predict susceptibility to tobacco-induced disease.
Abstract 4679: A novel assay to predict susceptibility to tobacco-induced disease.
Abstract Background: Tobacco misuse is the leading preventable cause of morbidity and mortality in the world. Tobacco-induced DNA damage is one of the main mechanism...

Back to Top