Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Development of a new seismic-data acquisition station based on system-on-a-programmable-chip technology

View through CrossRef
There has been considerable development of seismic detectors over the last 80 years. However, there is still a need to further develop new earthquake exploration and data acquisition systems with high precision. In particular, for China to keep up with the latest technology of these systems, it is important to be involved in the research and development, instead of importing systems that soon fall behind the latest technology. In this study, the features of system-on-a-programmable-chip (SoPC) technology are analyzed and used to design a new digital seismic-data acquisition station. The hardware circuit of the station was developed, and the analog board and the main control data-transmission board were designed according to the needs of digital seismic-data acquisition stations. High-definition analog-to-digital converter sequential digital filter technology of the station (cascade integrator comb filter, finite impulse response digital filter) were incorporated to provide advantages to the acquisition station, such as high definition, large dynamic scope, and low noise. A specific data-transmission protocol was designed for the station, which ensured a transmission speed of 16 Mbps along a 55-m wire with low power consumption. Synchronic acquisition was researched and developed, so as to achieve accuracy better than 200 ns. The key technologies were integrated into the SoPC of the main control data-transmission board, so as to ensure high-resolution acquisition of the station, while improving the accuracy of the synchronic acquisition and data-transmission speed, lowering the power consumption, and preparing for the follow-up efforts to tape out.
Title: Development of a new seismic-data acquisition station based on system-on-a-programmable-chip technology
Description:
There has been considerable development of seismic detectors over the last 80 years.
However, there is still a need to further develop new earthquake exploration and data acquisition systems with high precision.
In particular, for China to keep up with the latest technology of these systems, it is important to be involved in the research and development, instead of importing systems that soon fall behind the latest technology.
In this study, the features of system-on-a-programmable-chip (SoPC) technology are analyzed and used to design a new digital seismic-data acquisition station.
The hardware circuit of the station was developed, and the analog board and the main control data-transmission board were designed according to the needs of digital seismic-data acquisition stations.
High-definition analog-to-digital converter sequential digital filter technology of the station (cascade integrator comb filter, finite impulse response digital filter) were incorporated to provide advantages to the acquisition station, such as high definition, large dynamic scope, and low noise.
A specific data-transmission protocol was designed for the station, which ensured a transmission speed of 16 Mbps along a 55-m wire with low power consumption.
Synchronic acquisition was researched and developed, so as to achieve accuracy better than 200 ns.
The key technologies were integrated into the SoPC of the main control data-transmission board, so as to ensure high-resolution acquisition of the station, while improving the accuracy of the synchronic acquisition and data-transmission speed, lowering the power consumption, and preparing for the follow-up efforts to tape out.

Related Results

Seismic Frequency Enhancement for Mapping and Reservoir Characterization of Arab Formation: Case Study Onshore UAE
Seismic Frequency Enhancement for Mapping and Reservoir Characterization of Arab Formation: Case Study Onshore UAE
Abstract Mapping and discrimination of Upper Jurassic Arab reservoirs (Arab A/B/C and D) in this 3D seismic onshore field of Abu Dhabi, is very sensitive to the seis...
4D Seismic on Gullfaks
4D Seismic on Gullfaks
SUMMARY New technologies are rapidly emerging helping to obtain optimal drainage of large reservoirs. 4D seismic is such a reservoir monitoring technique. The phy...
Integrated Hydrocarbon Detection Based on Full Frequency Pre-Stack Seismic Inversion
Integrated Hydrocarbon Detection Based on Full Frequency Pre-Stack Seismic Inversion
Abstract To improve the accuracy of hydrocarbon detection, seismic amplitude variation with offset (AVO), seismic amplitude variation with frequency (AVF), and direc...
General classification of seismic protection systems of buildings and structures
General classification of seismic protection systems of buildings and structures
The issues of ensuring the seismic resistance of buildings and structures hold a leading position despite significant achievements in this area. This is confirmed by the significan...
Seismic Motion Inversion Based on Geological Conditioning and Its Application in Thin Reservoir Prediction, Middle East
Seismic Motion Inversion Based on Geological Conditioning and Its Application in Thin Reservoir Prediction, Middle East
Abstract With the development of exploration and development, thin reservoir prediction is becoming more and more important. However, due to the limit of seismic res...
Seismic exploration for tight gas sand: a case study in Sulige Gasfield
Seismic exploration for tight gas sand: a case study in Sulige Gasfield
Abstract Sulige Gasfield is the biggest gasfield found so far in China. The pay zone is He8 formation of lower-Permian. It is braided river sediment and the main ...
Prediction of P-Wave Sonic Logs Via Neural Network and Seismic Trace Inversion: A Comparison
Prediction of P-Wave Sonic Logs Via Neural Network and Seismic Trace Inversion: A Comparison
Abstract A methodology that utilizes neural network (NN) architecture was developed for predicting P-wave sonic logs. Well logs and fundamental attributes of seis...

Back to Top