Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

The cytochrome P450 reductase contributes to normal cardiovascular function

View through CrossRef
Cytochrome P450 enzymes are a large superfamily of membrane-bound heme-containing monooxygenases. They are essential for the oxidative metabolism of endogenous substrates such as steroids and fatty acids, and biotransformation of xenobiotic substrates such as pollutants and drugs. Although the highest expression of CYPs is found in the liver, their cardiovascular expression is not negligible with CYP450 subfamilies being responsible for the production of vasoactive lipids. Of importance, the enzymatic activity of all microsomal CYP450 isoenzymes is dependent on the cytochrome P450 reductase (POR), an electron donor. In the first part of this work, the role of cytochrome P450 monooxygenases on the biotransformation of organic nitrates was investigated. Recombinant SupersomesTM were selected and incubated with NTG and PETN, where nitrite release was measured as a nitric oxide (NO) footprint. The capacity of the recombinant POR/CYP450 system to release nitrite from NO prodrugs was shown to be CYP-specific and dose-dependent. To study the involvement of CYP450 enzymes in the vascular biotransformation of organic nitrates in vivo, a smooth muscle-cell specific, inducible knockout model of POR (smcPOR-/-) was generated. Organ chamber experiments revealed that the vascular POR/CYP450 system had no impact on the dilator response of NTG and PETN. In line with previous publications, inhibition of ALDH2, known as the main enzyme responsible for the activation of NTG and PETN, and/or abolishment of the endogenous NO production did not reveal a contribution of the POR/CYP450 system to the dilator response of NTG and PETN. To better understand these results, we looked at the expression of the hepatic and vascular expression of the POR/CYP450 system where the hepatic was increased by 10- to 40-fold as shown by Western blot analysis. We concluded that due to insufficient vascular expression of CYP450 enzymes their contribution to the bioactivation of NTG and PETN is only minor. The second part of this work focused on the cardiac relevance of endothelial isoenzymes. For that purpose, an endothelial cell-specific, tamoxifen-inducible knockout model of POR was generated and characterized in the present study. RNA-sequencing of the heart of healthy mice revealed that the CYP450 expression is cell-specific with cardiac endothelial cells (ECs) exhibiting an enrichment in the expression of the Cyp4 family (ω-oxidation of fatty acids) and of the Cyp2 family (production of EETs). Under non-stredded conditions (i.e. 30 days after inducing the knockout by tamoxifen feeding), endothelial deletion of POR was associated with cardiac remodelling as observed by an increase in the ratio of heart weight to body weight and an increase in the cardiomyocyte area. RNA-sequencing of cardiac ECs suggested that loss of POR might alter ribosomal biogenesis and protein synthesis, which could potentially affect the cardiac contractility in ecPOR-/- mice. Metabolomics from cardiac tissue of CTL and ecPOR-/- mice were not indicative for an important metabolic function of the endothelial POR/CYP450 system in the heart. The combination of transverse aortic constriction (TAC) with endothelial deletion of POR accelerates the development of heart failure in mice as detected by a reduction in cardiac output and stroke volume. These effects were mediated most likely by a reduction in vascular EETs production, which increases vascular stiffness, resulting in cardiac remodeling.
University Library J. C. Senckenberg
Title: The cytochrome P450 reductase contributes to normal cardiovascular function
Description:
Cytochrome P450 enzymes are a large superfamily of membrane-bound heme-containing monooxygenases.
They are essential for the oxidative metabolism of endogenous substrates such as steroids and fatty acids, and biotransformation of xenobiotic substrates such as pollutants and drugs.
Although the highest expression of CYPs is found in the liver, their cardiovascular expression is not negligible with CYP450 subfamilies being responsible for the production of vasoactive lipids.
Of importance, the enzymatic activity of all microsomal CYP450 isoenzymes is dependent on the cytochrome P450 reductase (POR), an electron donor.
In the first part of this work, the role of cytochrome P450 monooxygenases on the biotransformation of organic nitrates was investigated.
Recombinant SupersomesTM were selected and incubated with NTG and PETN, where nitrite release was measured as a nitric oxide (NO) footprint.
The capacity of the recombinant POR/CYP450 system to release nitrite from NO prodrugs was shown to be CYP-specific and dose-dependent.
To study the involvement of CYP450 enzymes in the vascular biotransformation of organic nitrates in vivo, a smooth muscle-cell specific, inducible knockout model of POR (smcPOR-/-) was generated.
Organ chamber experiments revealed that the vascular POR/CYP450 system had no impact on the dilator response of NTG and PETN.
In line with previous publications, inhibition of ALDH2, known as the main enzyme responsible for the activation of NTG and PETN, and/or abolishment of the endogenous NO production did not reveal a contribution of the POR/CYP450 system to the dilator response of NTG and PETN.
To better understand these results, we looked at the expression of the hepatic and vascular expression of the POR/CYP450 system where the hepatic was increased by 10- to 40-fold as shown by Western blot analysis.
We concluded that due to insufficient vascular expression of CYP450 enzymes their contribution to the bioactivation of NTG and PETN is only minor.
The second part of this work focused on the cardiac relevance of endothelial isoenzymes.
For that purpose, an endothelial cell-specific, tamoxifen-inducible knockout model of POR was generated and characterized in the present study.
RNA-sequencing of the heart of healthy mice revealed that the CYP450 expression is cell-specific with cardiac endothelial cells (ECs) exhibiting an enrichment in the expression of the Cyp4 family (ω-oxidation of fatty acids) and of the Cyp2 family (production of EETs).
Under non-stredded conditions (i.
e.
30 days after inducing the knockout by tamoxifen feeding), endothelial deletion of POR was associated with cardiac remodelling as observed by an increase in the ratio of heart weight to body weight and an increase in the cardiomyocyte area.
RNA-sequencing of cardiac ECs suggested that loss of POR might alter ribosomal biogenesis and protein synthesis, which could potentially affect the cardiac contractility in ecPOR-/- mice.
Metabolomics from cardiac tissue of CTL and ecPOR-/- mice were not indicative for an important metabolic function of the endothelial POR/CYP450 system in the heart.
The combination of transverse aortic constriction (TAC) with endothelial deletion of POR accelerates the development of heart failure in mice as detected by a reduction in cardiac output and stroke volume.
These effects were mediated most likely by a reduction in vascular EETs production, which increases vascular stiffness, resulting in cardiac remodeling.

Related Results

Biochemical characteristics of purified beef liver NADPH–cytochrome P450 reductase
Biochemical characteristics of purified beef liver NADPH–cytochrome P450 reductase
AbstractNADPH–cytochrome P450 reductase, an obligatory component of the cytochrome P450 dependent monooxygenase system, was purified to electrophoretic homogeneity from beef liver ...
On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
<span style="font-size:11pt"><span style="background:#f9f9f4"><span style="line-height:normal"><span style="font-family:Calibri,sans-serif"><b><spa...
The Second Protonation in the Bio-Catalytic Cycles of the Enzymes Cytochrome P450 and Superoxide Reductase
The Second Protonation in the Bio-Catalytic Cycles of the Enzymes Cytochrome P450 and Superoxide Reductase
The enzymes Cytochrome P450 and Superoxide Reductase, which have a similar coordination center [FeN4S], begin their biochemical cycles similarly. They absorb an oxygen molecule, ad...
Melatonin Activation by Human Cytochrome P450 Enzymes: A Comparison between Different Isozymes
Melatonin Activation by Human Cytochrome P450 Enzymes: A Comparison between Different Isozymes
Cytochrome P450 enzymes in the human body play a pivotal role in both the biosynthesis and the degradation of the hormone melatonin. Melatonin plays a key role in circadian rhythms...
DIFFERENT ASPECTS OF 5α‐REDUCTASE DEFICIENCY IN MALE PSEUDOHERMAPHRODITISM AND HYPOTHYROIDISM
DIFFERENT ASPECTS OF 5α‐REDUCTASE DEFICIENCY IN MALE PSEUDOHERMAPHRODITISM AND HYPOTHYROIDISM
SUMMARYThe 5α‐reductase activity that mediates the transformation of testosterone to dihydrotestosterone in various anatomical sites of human beings, has been studied in different ...
Models de distribució sobre el símplex
Models de distribució sobre el símplex
Les dades composicionals són vectors les components dels quals representen proporcions respecte d'un total, i per tant estan sotmesos a la restricció que la suma de les seves compo...
Cytochrome P450 Monooxygenases as Reporters for Circadian-Regulated Pathways      
Cytochrome P450 Monooxygenases as Reporters for Circadian-Regulated Pathways      
Abstract Cytochrome P450 monooxygenases (P450s) play important roles in the synthesis of diverse secondary compounds in Arabidopsis (Arabidopsis thaliana). Compariso...

Back to Top