Javascript must be enabled to continue!
The Impact of Autoconversion Parameterizations of Cloud Droplet to Raindrop on Numerical Simulations of a Meiyu Front Heavy Rainfall Event
View through CrossRef
This study analyzes the different impacts of autoconversion of cloud droplets to raindrops (ACR) in a Meiyu front rainfall event by comparing two simulations using different parameterizations (KK00 and LD04) in the Weather Research and Forecasting (WRF) model. The Meiyu frontal clouds are further classified into stratiform and deep-convective cloud categories, and the precipitation and microphysical characteristics of the two simulations are compared with a budget analysis of raindrops. The simulated precipitation, radar composite reflectivity distribution, and rain rate evolution are overall consistent with observations while precipitation is overestimated, especially in the rainfall centers. The intensity and vertical structure of the ACR process between the two simulations are significantly different. The ACR rate in LD04 is larger than that in KK00 and there are two peak heights in LD04 but only one in KK00. Accretion of droplets by raindrops (CLcr), melting of ice-phase particles (ML), evaporation of raindrops (VDrv), and accretion of raindrops by ice-phase particles (CLri) are the dominant pathways to raindrop production. Limited distributional differences can be found in both the deep-convective and stratiform clouds between the two simulations during the growth stage of the Meiyu event. Stronger ACR in LD04 results in less cloud droplet content (Lc), more raindrop content (Lr), and larger raindrop number concentration (Nr) and the effect of ACR on Nr is greater than that on Lr. The ACR process also impacts other microphysical processes indirectly, and the influences vary in the two cloud categories. Less CLcr (especially), ML, and VDrv content, caused by stronger ACR, lead to less raindrop production in the LD04 deep-convective clouds, which is different from stratiform clouds, and finally correct the overestimated rainfall center to better match the observations.
Title: The Impact of Autoconversion Parameterizations of Cloud Droplet to Raindrop on Numerical Simulations of a Meiyu Front Heavy Rainfall Event
Description:
This study analyzes the different impacts of autoconversion of cloud droplets to raindrops (ACR) in a Meiyu front rainfall event by comparing two simulations using different parameterizations (KK00 and LD04) in the Weather Research and Forecasting (WRF) model.
The Meiyu frontal clouds are further classified into stratiform and deep-convective cloud categories, and the precipitation and microphysical characteristics of the two simulations are compared with a budget analysis of raindrops.
The simulated precipitation, radar composite reflectivity distribution, and rain rate evolution are overall consistent with observations while precipitation is overestimated, especially in the rainfall centers.
The intensity and vertical structure of the ACR process between the two simulations are significantly different.
The ACR rate in LD04 is larger than that in KK00 and there are two peak heights in LD04 but only one in KK00.
Accretion of droplets by raindrops (CLcr), melting of ice-phase particles (ML), evaporation of raindrops (VDrv), and accretion of raindrops by ice-phase particles (CLri) are the dominant pathways to raindrop production.
Limited distributional differences can be found in both the deep-convective and stratiform clouds between the two simulations during the growth stage of the Meiyu event.
Stronger ACR in LD04 results in less cloud droplet content (Lc), more raindrop content (Lr), and larger raindrop number concentration (Nr) and the effect of ACR on Nr is greater than that on Lr.
The ACR process also impacts other microphysical processes indirectly, and the influences vary in the two cloud categories.
Less CLcr (especially), ML, and VDrv content, caused by stronger ACR, lead to less raindrop production in the LD04 deep-convective clouds, which is different from stratiform clouds, and finally correct the overestimated rainfall center to better match the observations.
Related Results
The diurnal cycle of lightning and storms during the pre-Meiyu, Meiyu and post-Meiyu period over Yangtze-Huaihe River Basin, China
The diurnal cycle of lightning and storms during the pre-Meiyu, Meiyu and post-Meiyu period over Yangtze-Huaihe River Basin, China
<p>Using 5 years of operational Doppler radar, cloud-to-ground lightning observations and NECP reanalysis data, this study, for the first time for such a purpose, exa...
Stage-Dependent Microphysical Structures of Meiyu Heavy Rainfall in the Yangtze-Huaihe River Valley Revealed by GPM DPR
Stage-Dependent Microphysical Structures of Meiyu Heavy Rainfall in the Yangtze-Huaihe River Valley Revealed by GPM DPR
This study presents a comprehensive analysis of the microphysical structures of Meiyu heavy rainfall (near-surface rainfall intensity > 8 mm/h) across different life stages in t...
Controlled production of double emulsion by microfluid technique
Controlled production of double emulsion by microfluid technique
All planned inertial confinement fusion (ICF) capsule targets except machined beryllium require plastic mandrels with tight requirements on which the ablator is built. In this pape...
Lattice Boltzmann simulation of droplet dynamics in a bifurcating micro-channel
Lattice Boltzmann simulation of droplet dynamics in a bifurcating micro-channel
The droplet dynamic in a bifurcating micro-channel, as one of the basic multiphase problems, is frequently encountered in the fields of science and engineering. Due to its great re...
Approximation error correction for drizzle formation in bulk microphysical parameterizations
Approximation error correction for drizzle formation in bulk microphysical parameterizations
<p>The so-called autoconversion is a key numerical process used to describe the coalescence growth of cloud droplets to drizzle and rain in atmospheric models. Togeth...
Influence of Cumulative Rainfall on the Occurrence of Landslides in Korea
Influence of Cumulative Rainfall on the Occurrence of Landslides in Korea
This study presents the impact of cumulative rainfall on landslides, following the analysis of cumulative rainfall for 20 days before the landslide. For the 1520 landslides analyze...
Influences of lateral boundary forcings on the 2020 extreme Meiyu in the Yangtze-Huaihe River valley
Influences of lateral boundary forcings on the 2020 extreme Meiyu in the Yangtze-Huaihe River valley
AbstractIn this study, a Regional Climate Model (RegCM4.6) is employed to simulate the extreme Meiyu in the Yangtze-Huaihe River valley (YHRV) from June to July 2020. The influence...
Comparisons of Retention and Lag Characteristics of Rainfall–Runoff under Different Rainfall Scenarios in Low-Impact Development Combination: A Case Study in Lingang New City, Shanghai
Comparisons of Retention and Lag Characteristics of Rainfall–Runoff under Different Rainfall Scenarios in Low-Impact Development Combination: A Case Study in Lingang New City, Shanghai
An increasing focus has been given to stormwater management using low-impact development (LID), which is regarded as a “near-nature” concept and is utilized to manage and reduce su...

