Javascript must be enabled to continue!
Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM
View through CrossRef
Rohingya in Indonesia has become trending conversation on social media. Sentiment analysis can get public responds. Big data makes the problem time efficiency labeling process, therefore the lexicon dictionary is needed for the labeling process. Data is growing and circulating very rapidly so it takes a fast and efficient time. Although it is fast and makes it easier to solve problems, it is still necessary to question the accuracy produced when using the lexicon labeling. A comparison of the labeling process between the InSet lexicon and the VADER lexicon was conducted to determine the accuracy of the labeling. It was done by combining lexicon with machine learning method of support vector machine and TF-IDF weighting and accuracy result calculated using confusion marix. Data from social media X as many as 9117 lines and labeled with InSet lexicon result 5241 negative sentiments, 1369 positive, and 521 neutral. Then the labeling results with VADER produced 2749 positive, 2523 negative, and 1881 neutral. After labeled, processed SVM and calculated accuracy with results of InSet lexicon accuracy having an average of 85.8% while the VADER SVM lexicon has an average of 82.65%.
Asosiasi Penelitian dan Pengajar Ilmu Hukum Indonesia
Title: Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM
Description:
Rohingya in Indonesia has become trending conversation on social media.
Sentiment analysis can get public responds.
Big data makes the problem time efficiency labeling process, therefore the lexicon dictionary is needed for the labeling process.
Data is growing and circulating very rapidly so it takes a fast and efficient time.
Although it is fast and makes it easier to solve problems, it is still necessary to question the accuracy produced when using the lexicon labeling.
A comparison of the labeling process between the InSet lexicon and the VADER lexicon was conducted to determine the accuracy of the labeling.
It was done by combining lexicon with machine learning method of support vector machine and TF-IDF weighting and accuracy result calculated using confusion marix.
Data from social media X as many as 9117 lines and labeled with InSet lexicon result 5241 negative sentiments, 1369 positive, and 521 neutral.
Then the labeling results with VADER produced 2749 positive, 2523 negative, and 1881 neutral.
After labeled, processed SVM and calculated accuracy with results of InSet lexicon accuracy having an average of 85.
8% while the VADER SVM lexicon has an average of 82.
65%.
.
Related Results
Analisis Sentimen Berdasarkan Hasil Review Lokasi Google Map Menggunakan Natural Language Toolkit TextBlob dan Naïve Bayes
Analisis Sentimen Berdasarkan Hasil Review Lokasi Google Map Menggunakan Natural Language Toolkit TextBlob dan Naïve Bayes
Metode analisa sentimen adalah metode yang digunakan untuk memberikan pemahaman tentang perasaan atau opini yang terkandung dalam suatu teks. Seiring dengan perkembangan teknologi ...
Analisis Sentimen Layanan Pelanggan Provider Internet dengan Algoritma Support Vector Machine dan Naïve Bayes
Analisis Sentimen Layanan Pelanggan Provider Internet dengan Algoritma Support Vector Machine dan Naïve Bayes
Meningkatnya keluhan dan pujian pelanggan terhadap layanan internet menunjukkan pentingnya memahami opini publik secara menyeluruh. Jika hal ini tidak dimanfaatkan dengan baik, per...
Analisis Sentimen Media Sosial Terhadap Calon Pilkada 2024 Dengan Metode Naïve Bayes
Analisis Sentimen Media Sosial Terhadap Calon Pilkada 2024 Dengan Metode Naïve Bayes
Menjelang Pilkada Indonesia 2024, polarisasi politik dan sentimen masyarakat menjadi isu penting yang dianalisis melalui media sosial. Penelitian ini bertujuan untuk mengevaluasi m...
PERAN TATA KELOLA PERUSAHAAN DALAM MEMODERASI PENGARUH IMPLEMANTASI GREEN ACCOUNTING, CORPORATE SOCIAL RESPONSIBILITY DAN FIRM SIZE TERHADAP KINERJA KEUANGAN
PERAN TATA KELOLA PERUSAHAAN DALAM MEMODERASI PENGARUH IMPLEMANTASI GREEN ACCOUNTING, CORPORATE SOCIAL RESPONSIBILITY DAN FIRM SIZE TERHADAP KINERJA KEUANGAN
This study examines the role of corporate governance in moderating the influence of green accounting disclosure, corporate social responsibility (CSR), and firm size on the financi...
ANALISIS SENTIMEN MASYARAKAT TERHADAP PEMILIHAN BUPATI CIREBON 2024 BERDASARKAN KOMENTAR PADA VIDEO DEBAT DI YOUTUBE DENGAN METODE NAÏVE BAYES
ANALISIS SENTIMEN MASYARAKAT TERHADAP PEMILIHAN BUPATI CIREBON 2024 BERDASARKAN KOMENTAR PADA VIDEO DEBAT DI YOUTUBE DENGAN METODE NAÏVE BAYES
Metode Naïve Bayes digunakan sebagai algoritma utama untuk mengklasifikasikan komentar ke dalam kategori sentimen positif, negatif, dan . Maka dilakukan dalam beberapa tahapan, ant...
Pemenuhan Hak Asasi Manusia kepada Etnis Rohingya di Myanmar
Pemenuhan Hak Asasi Manusia kepada Etnis Rohingya di Myanmar
The occurrence of human rights violations against the Rohingya ethnicity in Myanmar has become an international concern. The Rohingya, who have lived for generations in this part o...
Analisis Sentimen dan Pemodelan Topik pada Post tentang Merek Teknologi di X Menggunakan Fine-tuning IndoBERT dan BERTopic
Analisis Sentimen dan Pemodelan Topik pada Post tentang Merek Teknologi di X Menggunakan Fine-tuning IndoBERT dan BERTopic
Media sosial telah menjadi wadah bagi konsumen untuk menyampaikan persepsi dan opini. Opini yang beredar tersebut berpotensi menjadi sumber data yang berharga bagi brand, termasuk ...
Program Aplikasi FEM Untuk Analisis Struktur Rangka Baja 2D
Program Aplikasi FEM Untuk Analisis Struktur Rangka Baja 2D
Rangka batang merupakan susunan elemen yang membentuk segitiga atau kombinasi segitiga sehingga membentuk struktur rangka yang stabil. Untuk mendapatkan desain struktur yang optima...


