Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Influences on Chemical Distribution Patterns across the west Greenland Shelf: The Roles of Ocean Currents, Sea Ice Melt, and Freshwater Runoff

View through CrossRef
Abstract. The west Greenland shelf is a dynamic marine environment influenced by various physicochemical and biological processes. This study provides an overview of the main factors affecting the distribution of macronutrients, carbonate system parameters, and dissolved trace elements during late summer. Key drivers include major ocean currents, melting sea ice, and terrestrial freshwater runoff, each uniquely contributing to the cycling and spatial distribution of chemical constituents. Major ocean currents, such as the southward-moving Baffin Island Current (BIC) and the northward-moving West Greenland Current (WGC), shape the chemical composition of shelf waters by introducing water masses with distinct chemical signatures. Melting sea ice is an important source of freshwater and dissolved constituents for the marine environment. The east-to-west direction of sea ice retreat creates nutrient gradients, with low nutrient levels in highly productive shelf waters and high nutrient levels in areas with prolonged ice cover. This process also affects the carbonate system, leading to changes in pH and aragonite saturation states, which is critical for the health of marine organisms. Terrestrial freshwater runoff, particularly from the Greenland Ice Sheet (GIS), replenishes macronutrients in the photic zone, stimulating primary production and creating important CO2 sinks. However, surface waters become more susceptible to acidification by the input of poorly buffered glacial freshwater. Understanding these key drivers is essential for forecasting future changes in the marine chemistry and biology of the west Greenland shelf, especially in the context of ongoing climate change within this high-latitude region.
Title: Influences on Chemical Distribution Patterns across the west Greenland Shelf: The Roles of Ocean Currents, Sea Ice Melt, and Freshwater Runoff
Description:
Abstract.
The west Greenland shelf is a dynamic marine environment influenced by various physicochemical and biological processes.
This study provides an overview of the main factors affecting the distribution of macronutrients, carbonate system parameters, and dissolved trace elements during late summer.
Key drivers include major ocean currents, melting sea ice, and terrestrial freshwater runoff, each uniquely contributing to the cycling and spatial distribution of chemical constituents.
Major ocean currents, such as the southward-moving Baffin Island Current (BIC) and the northward-moving West Greenland Current (WGC), shape the chemical composition of shelf waters by introducing water masses with distinct chemical signatures.
Melting sea ice is an important source of freshwater and dissolved constituents for the marine environment.
The east-to-west direction of sea ice retreat creates nutrient gradients, with low nutrient levels in highly productive shelf waters and high nutrient levels in areas with prolonged ice cover.
This process also affects the carbonate system, leading to changes in pH and aragonite saturation states, which is critical for the health of marine organisms.
Terrestrial freshwater runoff, particularly from the Greenland Ice Sheet (GIS), replenishes macronutrients in the photic zone, stimulating primary production and creating important CO2 sinks.
However, surface waters become more susceptible to acidification by the input of poorly buffered glacial freshwater.
Understanding these key drivers is essential for forecasting future changes in the marine chemistry and biology of the west Greenland shelf, especially in the context of ongoing climate change within this high-latitude region.

Related Results

Chemical Distribution Patterns across the west Greenland Shelf: The Roles of Ocean Currents, Sea Ice Melt, and Freshwater Runoff
Chemical Distribution Patterns across the west Greenland Shelf: The Roles of Ocean Currents, Sea Ice Melt, and Freshwater Runoff
The west Greenland shelf is a dynamic marine environment influenced by various physicochemical and biological processes. We captured a high-resolution, large-scale snapshot of vari...
Recent evolution of the greenlandic ice shelves 
Recent evolution of the greenlandic ice shelves 
<div>In the northern parts of Greenland, which hold more than 2.7 m of sea level equivalent, the ice flows through ice shelves, as in Antarctica. These floating platf...
Modelling the Hydro-fracture driven collapse of the Larsen B ice shelf
Modelling the Hydro-fracture driven collapse of the Larsen B ice shelf
Ice shelves play a key role in buttressing upstream ice - modulating the flow of grounded ice into the ocean and in turn affecting ice sheet contribution to sea level. Iceberg calv...
Effect of ocean heat flux on Titan's topography and tectonic stresses
Effect of ocean heat flux on Titan's topography and tectonic stresses
INTRODUCTIONThe thermo-mechanical evolution of Titan's ice shell is primarily controlled by the mode of the heat transfer in the ice shell and the amount of heat coming from the oc...
Seasonal Arctic sea ice predictability and prediction
Seasonal Arctic sea ice predictability and prediction
Arctic sea ice plays a central role in the Earth’s climate. Changes in the sea ice on seasonal-to-interannual timescales impact ecosystems, populations and a growing number of stak...
Viscous relaxation of Pluto's ice shell below Sputnik Planitia
Viscous relaxation of Pluto's ice shell below Sputnik Planitia
AbstractThe surface of Pluto is dominated by the Sputnik Planitia basin, possibly caused by an impact ~ 4 Gyr ago. To explain basin's unlikely position close to tidal axis with Cha...
Dissolved Neodymium Isotopes Trace Origin and Spatiotemporal Evolution of Modern Arctic Sea Ice
Dissolved Neodymium Isotopes Trace Origin and Spatiotemporal Evolution of Modern Arctic Sea Ice
<p>The lifetime and thickness of Arctic sea ice have markedly decreased in the recent past. This affects Arctic marine ecosystems and the biological pump, given that ...
Significant submarine ice loss from the Getz Ice Shelf, Antarctica
Significant submarine ice loss from the Getz Ice Shelf, Antarctica
Abstract. We present the first direct measurements of changes taking place at the base of the Getz Ice Shelf (GzIS) in West Antarctica. Our analysis is based on repeated airborne r...

Back to Top