Javascript must be enabled to continue!
Autapses enable temporal pattern recognition in spiking neural networks
View through CrossRef
ABSTRACTMost sensory stimuli are temporal in structure. How action potentials encode the information incoming from sensory stimuli remains one of the central research questions in neuroscience. Although there is evidence that the precise timing of spikes represents information in spiking neuronal networks, information processing in spiking networks is still not fully understood. One feasible way to understand the working mechanism of a spiking network is to associate the structural connectivity of the network with the corresponding functional behaviour. This work demonstrates the structure-function mapping of spiking networks evolved (or handcrafted) for a temporal pattern recognition task. The task is to recognise a specific order of the input signals so that theOut putneurone of the network spikes only for the correct placement and remains silent for all others. The minimal networks obtained for this task revealed the twofold importance of autapses in recognition; first, autapses simplify the switching among different network states. Second, autapses enable a network to maintain a network state, a form of memory. To show that the recognition task is accomplished by transitions between network states, we map the network states of a functional spiking neural network (SNN) onto the states of a finite-state transducer (FST, a formal model of computation that generates output symbols, here: spikes or no spikes at specific times, in response to input, here: a series of input signals). Finally, based on our understanding, we define rules for constructing the topology of a network handcrafted for recognising a subsequence of signals (pattern) in a particular order. The analysis of minimal networks recognising patterns of different lengths (two to six) revealed a positive correlation between the pattern length and the number of autaptic connections in the network. Furthermore, in agreement with the behaviour of neurones in the network, we were able to associate specific functional roles of ‘locking,’ ‘switching,’ and ‘accepting’ to neurones.
Title: Autapses enable temporal pattern recognition in spiking neural networks
Description:
ABSTRACTMost sensory stimuli are temporal in structure.
How action potentials encode the information incoming from sensory stimuli remains one of the central research questions in neuroscience.
Although there is evidence that the precise timing of spikes represents information in spiking neuronal networks, information processing in spiking networks is still not fully understood.
One feasible way to understand the working mechanism of a spiking network is to associate the structural connectivity of the network with the corresponding functional behaviour.
This work demonstrates the structure-function mapping of spiking networks evolved (or handcrafted) for a temporal pattern recognition task.
The task is to recognise a specific order of the input signals so that theOut putneurone of the network spikes only for the correct placement and remains silent for all others.
The minimal networks obtained for this task revealed the twofold importance of autapses in recognition; first, autapses simplify the switching among different network states.
Second, autapses enable a network to maintain a network state, a form of memory.
To show that the recognition task is accomplished by transitions between network states, we map the network states of a functional spiking neural network (SNN) onto the states of a finite-state transducer (FST, a formal model of computation that generates output symbols, here: spikes or no spikes at specific times, in response to input, here: a series of input signals).
Finally, based on our understanding, we define rules for constructing the topology of a network handcrafted for recognising a subsequence of signals (pattern) in a particular order.
The analysis of minimal networks recognising patterns of different lengths (two to six) revealed a positive correlation between the pattern length and the number of autaptic connections in the network.
Furthermore, in agreement with the behaviour of neurones in the network, we were able to associate specific functional roles of ‘locking,’ ‘switching,’ and ‘accepting’ to neurones.
Related Results
Embedding optimization reveals long-lasting history dependence in neural spiking activity
Embedding optimization reveals long-lasting history dependence in neural spiking activity
AbstractInformation processing can leave distinct footprints on the statistics of neural spiking. For example, efficient coding minimizes the statistical dependencies on the spikin...
Depth-aware salient object segmentation
Depth-aware salient object segmentation
Object segmentation is an important task which is widely employed in many computer vision applications such as object detection, tracking, recognition, and ret...
Fuzzy Chaotic Neural Networks
Fuzzy Chaotic Neural Networks
An understanding of the human brain’s local function has improved in recent years. But the cognition of human brain’s working process as a whole is still obscure. Both fuzzy logic ...
Role of the Frontal Lobes in the Propagation of Mesial Temporal Lobe Seizures
Role of the Frontal Lobes in the Propagation of Mesial Temporal Lobe Seizures
Summary: The depth ictal electroencephalographic (EEG) propagation sequence accompanying 78 complex partial seizures of mesial temporal origin was reviewed in 24 patients (15 from...
Geometry of population activity in spiking networks with low-rank structure
Geometry of population activity in spiking networks with low-rank structure
AbstractRecurrent network models are instrumental in investigating how behaviorally-relevant computations emerge from collective neural dynamics. A recently developed class of mode...
On the role of network dynamics for information processing in artificial and biological neural networks
On the role of network dynamics for information processing in artificial and biological neural networks
Understanding how interactions in complex systems give rise to various collective behaviours has been of interest for researchers across a wide range of fields. However, despite ma...
Adaptive Drop Approaches to Train Spiking-YOLO Network for Traffic Flow Counting
Adaptive Drop Approaches to Train Spiking-YOLO Network for Traffic Flow Counting
Abstract
Traffic flow counting is an object detection problem. YOLO (" You Only Look Once ") is a popular object detection network. Spiking-YOLO converts the YOLO network f...
Spiking neural network with local plasticity and sparse connectivity for audio classification
Spiking neural network with local plasticity and sparse connectivity for audio classification
Purpose. Studying the possibility of implementing a data classification method based on a spiking neural network, which has a low number of connections and is trained based on loca...

