Javascript must be enabled to continue!
Detection and removal of barcode swapping in single-cell RNA-seq data
View through CrossRef
AbstractBarcode swapping results in the mislabelling of sequencing reads between multiplexed samples on patterned flow-cell Illumina sequencing machines. This may compromise the validity of numerous genomic assays; however, the severity and consequences of barcode swapping remain poorly understood. We have used two statistical approaches to robustly quantify the fraction of swapped reads in two plate-based single-cell RNA-sequencing datasets. We found that approximately 2.5% of reads were mislabelled between samples on the HiSeq 4000, which is lower than previous reports. We observed no correlation between the swapped fraction of reads and the concentration of free barcode across plates. Furthermore, we have demonstrated that barcode swapping may generate complex but artefactual cell libraries in droplet-based single-cell RNA-sequencing studies. To eliminate these artefacts, we have developed an algorithm to exclude individual molecules that have swapped between samples in 10x Genomics experiments, allowing the continued use of cutting-edge sequencing machines for these assays.
Springer Science and Business Media LLC
Title: Detection and removal of barcode swapping in single-cell RNA-seq data
Description:
AbstractBarcode swapping results in the mislabelling of sequencing reads between multiplexed samples on patterned flow-cell Illumina sequencing machines.
This may compromise the validity of numerous genomic assays; however, the severity and consequences of barcode swapping remain poorly understood.
We have used two statistical approaches to robustly quantify the fraction of swapped reads in two plate-based single-cell RNA-sequencing datasets.
We found that approximately 2.
5% of reads were mislabelled between samples on the HiSeq 4000, which is lower than previous reports.
We observed no correlation between the swapped fraction of reads and the concentration of free barcode across plates.
Furthermore, we have demonstrated that barcode swapping may generate complex but artefactual cell libraries in droplet-based single-cell RNA-sequencing studies.
To eliminate these artefacts, we have developed an algorithm to exclude individual molecules that have swapped between samples in 10x Genomics experiments, allowing the continued use of cutting-edge sequencing machines for these assays.
Related Results
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Abstarct
Introduction
Isolated brain hydatid disease (BHD) is an extremely rare form of echinococcosis. A prompt and timely diagnosis is a crucial step in disease management. This ...
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...
Abstract P1-05-23: Utilities and challenges of RNA-Seq based expression and variant calling in a clinical setting
Abstract P1-05-23: Utilities and challenges of RNA-Seq based expression and variant calling in a clinical setting
Abstract
Introduction
Variant calling based on DNA samples has been the gold standard of clinical testing since the advent of Sanger sequencing. The u...
Generating Synthetic Single Cell Data from Bulk RNA-seq Using a Pretrained Variational Autoencoder
Generating Synthetic Single Cell Data from Bulk RNA-seq Using a Pretrained Variational Autoencoder
AbstractSingle cell RNA sequencing (scRNA-seq) is a powerful approach which generates genome-wide gene expression profiles at single cell resolution. Among its many applications, i...
Detection and removal of barcode swapping in single-cell RNA-seq data
Detection and removal of barcode swapping in single-cell RNA-seq data
AbstractBarcode swapping results in the mislabeling of sequencing reads between multiplexed samples on the new patterned flow cell Illumina sequencing machines. This may compromise...
Detection of Multiple Types of Cancer Driver Mutations Using Targeted RNA Sequencing in NSCLC
Detection of Multiple Types of Cancer Driver Mutations Using Targeted RNA Sequencing in NSCLC
ABSTRACTCurrently, DNA and RNA are used separately to capture different types of gene mutations. DNA is commonly used for the detection of SNVs, indels and CNVs; RNA is used for an...
Benchmarking Algorithms for Gene Set Scoring of Single-cell ATAC-seq Data
Benchmarking Algorithms for Gene Set Scoring of Single-cell ATAC-seq Data
AbstractGene set scoring (GSS) has been routinely conducted for gene expression analysis of bulk or single-cell RNA-seq data, which helps to decipher single-cell heterogeneity and ...
Abstract 2323: Deciphering RNA degradation: Insights from a comparative analysis of paired fresh frozen/FFPE total RNA-seq
Abstract 2323: Deciphering RNA degradation: Insights from a comparative analysis of paired fresh frozen/FFPE total RNA-seq
Abstract
Background: Fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) samples are primary resources for archival tissues in cancer studies. Despite the ...

