Javascript must be enabled to continue!
IoT Energy Management System Based on a Wireless Sensor/Actuator Network
View through CrossRef
The use of DC microgrids (DC-µGs) offers a variety of environmental benefits; albeit, a successful implementation depends on the implementation of an Energy Management System (EMS). An EMS is broadly implemented with a hierarchical and centralized structure, where the communications layer presents as a key element of the system to achieve a successful operation. Additionally, the relatively low cost of wireless communication technologies and the advantages offered by remote monitoring have promoted the inclusion of the Internet of Things (IoT) and Wireless Sensor and Actuator Network (WSAN) technologies in the energy sector. In this article is presented the development of an IoT EMS based on a WSAN (IoT-EMS-WSAN) for the management of a DC-µG. The proposed EMS is composed of a WiFi-based WSAN that is interconnected to a DC-µG, a cloud server, and a User Web App. The proposed system was compared to a conventional EMS with a high latency wired communication layer. In comparison to the conventional EMS, the IoT-EMS-WSAN increased the updating time from 100 ms to 1200 ms; also, the bus of the DC-µG maintained its stability even though its variations increased; finally, the DC bus responded to an energy-outage scenario with a recovery time of 1 s instead of 150 ms, as seen with the conventional EMS. Despite the reduced latency, the developed IoT-EMS-WSAN was demonstrated to be a reliable tool for the management, monitoring, and remote controlling of a DC-µG.
Title: IoT Energy Management System Based on a Wireless Sensor/Actuator Network
Description:
The use of DC microgrids (DC-µGs) offers a variety of environmental benefits; albeit, a successful implementation depends on the implementation of an Energy Management System (EMS).
An EMS is broadly implemented with a hierarchical and centralized structure, where the communications layer presents as a key element of the system to achieve a successful operation.
Additionally, the relatively low cost of wireless communication technologies and the advantages offered by remote monitoring have promoted the inclusion of the Internet of Things (IoT) and Wireless Sensor and Actuator Network (WSAN) technologies in the energy sector.
In this article is presented the development of an IoT EMS based on a WSAN (IoT-EMS-WSAN) for the management of a DC-µG.
The proposed EMS is composed of a WiFi-based WSAN that is interconnected to a DC-µG, a cloud server, and a User Web App.
The proposed system was compared to a conventional EMS with a high latency wired communication layer.
In comparison to the conventional EMS, the IoT-EMS-WSAN increased the updating time from 100 ms to 1200 ms; also, the bus of the DC-µG maintained its stability even though its variations increased; finally, the DC bus responded to an energy-outage scenario with a recovery time of 1 s instead of 150 ms, as seen with the conventional EMS.
Despite the reduced latency, the developed IoT-EMS-WSAN was demonstrated to be a reliable tool for the management, monitoring, and remote controlling of a DC-µG.
Related Results
Dynamic stochastic modeling for inertial sensors
Dynamic stochastic modeling for inertial sensors
Es ampliamente conocido que los modelos de error para sensores inerciales tienen dos componentes: El primero es un componente determinista que normalmente es calibrado por el fabri...
Design of multi-energy-space-based energy-efficient algorithm in novel software-defined wireless sensor networks
Design of multi-energy-space-based energy-efficient algorithm in novel software-defined wireless sensor networks
Energy efficiency has always been a hot issue in wireless sensor networks. A lot of energy-efficient algorithms have been proposed to reduce energy consumption in traditional wirel...
Capability of pipe inside an actuator to move in various fluid and oil surfaces
Capability of pipe inside an actuator to move in various fluid and oil surfaces
This paper proposes a novel pipe inside a magnetic actuator that operates on the elastic energy of a vibration component excited by electromagnetic force. Flexible material such as...
Green IoT Based on Tropical Weather: The Impact of Energy Harvesting in Wireless Sensor Network
Green IoT Based on Tropical Weather: The Impact of Energy Harvesting in Wireless Sensor Network
Wireless Sensor Networks (WSNs) are a key component of Green IoT, as they play a critical role in many applications. However, a major challenge faced by WSNs is their limited energ...
Implementation of Faulty Sensor Detection Mechanism using Data Correlation of Multivariate Sensor Readings in Smart Agriculture
Implementation of Faulty Sensor Detection Mechanism using Data Correlation of Multivariate Sensor Readings in Smart Agriculture
Through sensor networks, agriculture can be connected to the IoT, which allows us to create connections among agronomists, farmers, and crops regardless of their geographical diffe...
Experimental investigation on the starting vortex induced by symmetrical dielectric barrier discharge plasma actuator
Experimental investigation on the starting vortex induced by symmetrical dielectric barrier discharge plasma actuator
Flow control using plasma actuator is a promising research field of aeronautical applications. Due to its low energy consumption, rapid response and simple construction, this actua...
Object classification based on piezoelectric actuator-sensor pair on robot hand using neural network
Object classification based on piezoelectric actuator-sensor pair on robot hand using neural network
Abstract
We propose a piezoelectric actuator-sensor pair applicable to object classification, which comprises two piezoelectric films on a polyethylene terephthalate...
Energy-saving clustering routing algorithm for heterogeneous wireless sensor networks based on energy iteration model and bee colony optimization
Energy-saving clustering routing algorithm for heterogeneous wireless sensor networks based on energy iteration model and bee colony optimization
Aiming at the problems of large number of data transmission node deaths and large transmission energy consumption output in energy-saving clustering routing communication of wirele...

