Javascript must be enabled to continue!
Interferometric SAR Observation of Permafrost Status in the Northern Qinghai-Tibet Plateau by ALOS, ALOS-2 and Sentinel-1 between 2007 and 2021
View through CrossRef
With global warming, permafrost is undergoing degradation, which may cause thawing subsidence, collapse, and emission of greenhouse gases preserved in previously frozen permafrost, change the local hydrology and ecology system, and threaten infrastructure and indigenous communities. The Qinghai-Tibet Plateau (QTP) is the world’s largest permafrost region in the middle and low latitudes. Permafrost status monitoring in the QTP is of great significance to global change and local economic development. In this study, we used 66 scenes of ALOS data (2007–2009), 73 scenes of ALOS-2 data (2015–2020) and 284 scenes of Sentinel-1 data (2017–2021) to evaluate the spatial and temporal permafrost deformation over the 83,000 km2 in the northern QTP, passing through the Tuotuohe, Beiluhe, Wudaoliang and Xidatan regions. We use the SBAS-InSAR method and present a coherence weighted least squares estimator without any hypothetical model to calculate long-term deformation velocity (LTDV) and maximum seasonal deformation (MSD) without any prior knowledge. Analysis of the ALOS results shows that the LTDV ranged from −20 to +20 mm/year during 2007–2009. For the ALOS-2 and Sentinel-1 results, the LTDV ranged from −30 to 30 mm/year during 2015–2021. Further study shows that the expansion areas of permafrost subsidence are concentrated on braided stream plains and thermokarst lakes. In these areas, due to glacial erosion, surface runoff and river alluvium, the contents of water and ground ice are sufficient, which could accelerate permafrost subsidence. In addition, by analyzing LTDV and MSD for the different periods, we found that the L-band ALOS-2 is more sensitive to the thermal collapse of permafrost than the C-band sensor and the detected collapse areas (LTDV < −10 mm/year) are consistent with the GF-1/2 thermal collapse dataset. This research indicates that the InSAR technique could be crucial for monitoring the evolution of permafrost and freeze-thaw disasters.
Title: Interferometric SAR Observation of Permafrost Status in the Northern Qinghai-Tibet Plateau by ALOS, ALOS-2 and Sentinel-1 between 2007 and 2021
Description:
With global warming, permafrost is undergoing degradation, which may cause thawing subsidence, collapse, and emission of greenhouse gases preserved in previously frozen permafrost, change the local hydrology and ecology system, and threaten infrastructure and indigenous communities.
The Qinghai-Tibet Plateau (QTP) is the world’s largest permafrost region in the middle and low latitudes.
Permafrost status monitoring in the QTP is of great significance to global change and local economic development.
In this study, we used 66 scenes of ALOS data (2007–2009), 73 scenes of ALOS-2 data (2015–2020) and 284 scenes of Sentinel-1 data (2017–2021) to evaluate the spatial and temporal permafrost deformation over the 83,000 km2 in the northern QTP, passing through the Tuotuohe, Beiluhe, Wudaoliang and Xidatan regions.
We use the SBAS-InSAR method and present a coherence weighted least squares estimator without any hypothetical model to calculate long-term deformation velocity (LTDV) and maximum seasonal deformation (MSD) without any prior knowledge.
Analysis of the ALOS results shows that the LTDV ranged from −20 to +20 mm/year during 2007–2009.
For the ALOS-2 and Sentinel-1 results, the LTDV ranged from −30 to 30 mm/year during 2015–2021.
Further study shows that the expansion areas of permafrost subsidence are concentrated on braided stream plains and thermokarst lakes.
In these areas, due to glacial erosion, surface runoff and river alluvium, the contents of water and ground ice are sufficient, which could accelerate permafrost subsidence.
In addition, by analyzing LTDV and MSD for the different periods, we found that the L-band ALOS-2 is more sensitive to the thermal collapse of permafrost than the C-band sensor and the detected collapse areas (LTDV < −10 mm/year) are consistent with the GF-1/2 thermal collapse dataset.
This research indicates that the InSAR technique could be crucial for monitoring the evolution of permafrost and freeze-thaw disasters.
Related Results
Review article: A systematic review of terrestrial dissolved organic carbon in northern permafrost
Review article: A systematic review of terrestrial dissolved organic carbon in northern permafrost
Abstract. As the permafrost region warms and permafrost soils thaw, vast pools of soil organic carbon (C) become vulnerable to enhanced microbial decomposition and lateral transpor...
Lithospheric Evolution and Geodynamic Process of the Qinghai‐Tibet Plateau: An Inspiration from the Yadong‐Golmud‐Ejin Geoscience Transect
Lithospheric Evolution and Geodynamic Process of the Qinghai‐Tibet Plateau: An Inspiration from the Yadong‐Golmud‐Ejin Geoscience Transect
Abstract The Tibet Geoscience Transect (Yadong‐Golmud‐Ejin) has revealed the basic structures, tectonic evolution and geodynamic process of the lithosphere of the Qinghai‐Tibet pla...
Thrust Propagation in the Aqqikkol Lake Area, the East Kunlun Mountains, Northwestern China
Thrust Propagation in the Aqqikkol Lake Area, the East Kunlun Mountains, Northwestern China
Abstract The western segment of the East Kunlun Mountains is one of the poorly studied regions in northwestern China. Through a structural analysis of the typical sections, we hav...
The Dynamic Analysis and Comparison of Emergy Ecological Footprint for the Qinghai–Tibet Plateau: A Case Study of Qinghai Province and Tibet
The Dynamic Analysis and Comparison of Emergy Ecological Footprint for the Qinghai–Tibet Plateau: A Case Study of Qinghai Province and Tibet
The Qinghai–Tibet Plateau is experiencing rapid urbanization and ecological degradation, which have led to unsustainable development. It is urgent to conduct a scientifically rigor...
Comparison of Synthetic Aperture Radar Sentinel-1 and ALOS-2 observations for lake monitoring
Comparison of Synthetic Aperture Radar Sentinel-1 and ALOS-2 observations for lake monitoring
This work investigates the efficacy of L-band and C-band Synthetic Aperture Radar (SAR) sensors onboard ALOS-2 and Sentinel-1 satellites, as compared to optical sensors onboard Sen...
The Complex and Well-Developed Morphological and Histological Structures of the Gastrointestinal Tract of the Plateau Zokor Improve Its Digestive Adaptability to High-Fiber Foods
The Complex and Well-Developed Morphological and Histological Structures of the Gastrointestinal Tract of the Plateau Zokor Improve Its Digestive Adaptability to High-Fiber Foods
The morphological and histological traits of the gastrointestinal tract (GIT) enable the animal to perform some specific functions that enhance the species’ adaptability to environ...
EO-based modelling and mapping of permafrost
EO-based modelling and mapping of permafrost
Observations have shown that climate is warming, and permafrost is thawing. The major questions now facing us are what are its impacts and consequences, and what can we can do abou...
Simulation of the Decadal Permafrost Distribution on the Qinghai‐Tibet Plateau (China) over the Past 50 Years
Simulation of the Decadal Permafrost Distribution on the Qinghai‐Tibet Plateau (China) over the Past 50 Years
ABSTRACTDecadal changes in permafrost distribution on the Qinghai‐Tibet Plateau (QTP) over the past 50 years (1960–2009) were simulated with a response model that uses data from a ...

