Javascript must be enabled to continue!
Cellulose Nanofiber Biotemplated Palladium Composite Aerogels
View through CrossRef
Noble metal aerogels offer a wide range of catalytic applications due to their high surface area and tunable porosity. Control over monolith shape, pore size, and nanofiber diameter is desired in order to optimize electronic conductivity and mechanical integrity for device applications. However, common aerogel synthesis techniques such as solvent mediated aggregation, linker molecules, sol–gel, hydrothermal, and carbothermal reduction are limited when using noble metal salts. Here, we present the synthesis of palladium aerogels using carboxymethyl cellulose nanofiber (CNF) biotemplates that provide control over aerogel shape, pore size, and conductivity. Biotemplate hydrogels were formed via covalent cross linking using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) with a diamine linker between carboxymethylated cellulose nanofibers. Biotemplate CNF hydrogels were equilibrated in precursor palladium salt solutions, reduced with sodium borohydride, and rinsed with water followed by ethanol dehydration, and supercritical drying to produce freestanding aerogels. Scanning electron microscopy indicated three-dimensional nanowire structures, and X-ray diffractometry confirmed palladium and palladium hydride phases. Gas adsorption, impedance spectroscopy, and cyclic voltammetry were correlated to determine aerogel surface area. These self-supporting CNF-palladium aerogels demonstrate a simple synthesis scheme to control porosity, electrical conductivity, and mechanical robustness for catalytic, sensing, and energy applications.
Title: Cellulose Nanofiber Biotemplated Palladium Composite Aerogels
Description:
Noble metal aerogels offer a wide range of catalytic applications due to their high surface area and tunable porosity.
Control over monolith shape, pore size, and nanofiber diameter is desired in order to optimize electronic conductivity and mechanical integrity for device applications.
However, common aerogel synthesis techniques such as solvent mediated aggregation, linker molecules, sol–gel, hydrothermal, and carbothermal reduction are limited when using noble metal salts.
Here, we present the synthesis of palladium aerogels using carboxymethyl cellulose nanofiber (CNF) biotemplates that provide control over aerogel shape, pore size, and conductivity.
Biotemplate hydrogels were formed via covalent cross linking using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) with a diamine linker between carboxymethylated cellulose nanofibers.
Biotemplate CNF hydrogels were equilibrated in precursor palladium salt solutions, reduced with sodium borohydride, and rinsed with water followed by ethanol dehydration, and supercritical drying to produce freestanding aerogels.
Scanning electron microscopy indicated three-dimensional nanowire structures, and X-ray diffractometry confirmed palladium and palladium hydride phases.
Gas adsorption, impedance spectroscopy, and cyclic voltammetry were correlated to determine aerogel surface area.
These self-supporting CNF-palladium aerogels demonstrate a simple synthesis scheme to control porosity, electrical conductivity, and mechanical robustness for catalytic, sensing, and energy applications.
Related Results
Recent Progress in Cellulose-Based Aerogels for Sustainable Oil–Water Separation Technologies
Recent Progress in Cellulose-Based Aerogels for Sustainable Oil–Water Separation Technologies
Polymer-based aerogels have recently received considerable research attention as a favorable option for oil–water separation due to their enhanced porous 3D structure with great sp...
All-cellulose nanocomposites film from sisal fiber
All-cellulose nanocomposites film from sisal fiber
In this work, self-reinforced cellulose nanocomposite films were produced using cellulose and nanofiber from sisal fiber as matrix and reinforcement, respectively. Cellulose nanofi...
Cellulose/Expandable Graphite Composite Aerogels with Good Flame- Retardant and Filtration Performance
Cellulose/Expandable Graphite Composite Aerogels with Good Flame- Retardant and Filtration Performance
Abstract
Cellulose has been widely used in filtration owing to its abundance, low density, and high specific surface area. However, the use of cellulose-based scaffolds for...
FABRICATION OF PCL-COLLAGEN NANOFIBER USING CHLOROFORM-FORMIC ACID SOLUTION AND ITS APPLICATION AS WOUND DRESSING CANDIDATE
FABRICATION OF PCL-COLLAGEN NANOFIBER USING CHLOROFORM-FORMIC ACID SOLUTION AND ITS APPLICATION AS WOUND DRESSING CANDIDATE
In this study, polycaprolactone-collagen nanofiber was prepared with 10% w/v composition using a mixture of chloroform-formic acid. PCL was dissolved in chloroform while collagen w...
Structure and Photocatalytic Properties of Ni-, Co-, Cu-, and Fe-Doped TiO2 Aerogels
Structure and Photocatalytic Properties of Ni-, Co-, Cu-, and Fe-Doped TiO2 Aerogels
TiO2 aerogels doped with Ni, Co, Cu, and Fe were prepared, and their structure and photocatalytic activity during the decomposition of a model pollutant, acid orange (AO7), were st...
PENGARUH VARIASI PENAMBAHAN MASSA PANI TERHADAP KONDUKTIVITAS NANOFIBER PVA/PANI
PENGARUH VARIASI PENAMBAHAN MASSA PANI TERHADAP KONDUKTIVITAS NANOFIBER PVA/PANI
Abstrak
Polianilin adalah salah satu polimer konduktif yang memiliki konduktivitas relatif tinggi dan banyak dikembangkan karena tahapan sintesisnya yang mudah. PANI dapat dibentu...
Fabrication and Characterization of Hydrophobic Aerogels Containing Bacterial Cellulose Coated with Copper Species via Mild Reduction
Fabrication and Characterization of Hydrophobic Aerogels Containing Bacterial Cellulose Coated with Copper Species via Mild Reduction
In this study, bacterial cellulose (BC) was coated with copper species via a room-temperature hydrazine-mediated reduction reaction of copper(II) acetate in a suspension phase of n...
Cellulose-Synthesizing Machinery in Bacteria
Cellulose-Synthesizing Machinery in Bacteria
Abstract
Cellulose is produced by all plants and a number of other organisms, including bacteria. The most representative cellulose-producing bacterial species is Gluconace...

